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SUMMARY 

A simplified  mathematical  model is derived  that is useful  for  studying  the 

effects of vibration-dissociation  coupling  in  fluid  flows.  The  derivation is based 

on an energy-moment  procedure  for  simplifying  the  master  equations.  The 

formalism  yields a final set of rate equations  that are similar  in many respects 

to  those of Marrone and Treanor.  Instead of a single  temperature  for  the  vibra- 

tional  energy  mode,  however, two vibrational  temperatures are defined,  one for 

the  distribution  in  the  lower  vibrational states and  one for  the  upper states. In 

this way the  perturbing  effect of dissociation and recombination on the  vibrational 

energy  states is approximately  accounted  for. Also included are  the  effects of 

molecular  anharmonicity,  both as regards  the  energy-level  spacing and the 

collisional  transition  rates. Such effects  require  determination of the "rate of 

quantum transfer"  occurring as a result of molecular  collisions, which is approx- 

imated by means of linear  relations.  The rate equations  that  result  contain  the 

necessary  modification of the  Landau-Teller  theory  to  account  for  anharmonic 

effects.  The  effects of dissociation and recombination are treated by a procedure 

similar  to  that  used by Marrone and Treanor,  except  that  only  vibrationally ex- 

cited  molecules  are  allowed  to  dissociate.  The  thermodynamic  quantities asso- 

ciated with the  vibrational  energy  mode are derived, and it is shown that  the 

procedure  for  considering  the  effects of anharmonicity  results  in  relations  that 

agree  favorably with the  more  accurate  quantities obtained from  spectroscopically 

determined  values of the  vibrational  energies. 

The  parameters of the  model  equations are evaluated by comparison of the 

pre-exponential  temperature  dependence of the  effective  dissociation rate with 

experimental results. For  this  comparison,  analytical  solutions are obtained 

that  apply  in  the  quasi-steady  zone  behind a normal  shock wave. The  effect of 

altering  certain  parameters is also discussed. 

Complete  numerical  solutions of the  model  equations are then  given for  the 

flow  behind a steady-shock wave  and for  nozzle  flow.  The  shock  structure is 

discussed  in  detail  including  the  effects of the  various  terms  that  comprise  the 
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,- rate equations.  The  transient,  quasi-steady, and final  relaxation  zones,  that 

have  been  described by previous  researchers,  are  displayed; and the  relaxation 

effects  peculiar  to  the  different  zones are pointed  out.  Values of the induction 

time,  during which the  effects of dissociation  are not observed,  are found  and 

compared with experimentally  obtained  delay  times.  The  values  obtained  from 

the  calculations a r e  an order of magnitude too large, and the  readjustments of 

the  assigned  parameters  that would improve  the  agreement  are  indicated. 

The  nozzle  solution is discussed  in  detail, and the  effects of the  various 

terms  in  the  model  rate  equations  are  again  described.  It is shown that  the 

characteristic  vibrational  relaxation  time  that  results  in  the  case of near equi- 

librium flow is about 1/4 of that  given by Landau-Teller  theory and is in  quali- 

tative  agreement with recent  experimental  data.  However,  such  reductions of 

the  vibrational  relaxation  time,  resulting  from  consideration of molecular 

anharmonicity  effects, are realized only if freezing  occurs  near  the  throat when 

the  translational and vibrational  temperatures are large. 

The  equations  introduced  in  this  paper  contain  the  minimum  structure 

allowing  agreement with presently  available  experimental  data.  The  formalism 

is  sufficiently  general  that  additional  structure  can  be  included as more  refined 

experimental  measurements  become  available. 

The  numerical  procedure  used  to  integrate  the  system of rate and flow 

equations is  also  described. 
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NOMENCLATURE 

ai ,j 

B* 

b 

streamtube  cross-sectional area 

integer  representing  the  separation  between  the  lower widely 

spaced  vibrational  energy  levels  having  relatively  long  relaxation 

times and the  upper  narrowly  spaced  energy  levels  having  shorter 

relaxation  times 

number of atoms  in  the  j-th  species (aj = 2 when j signifies 

molecules; j = 1 for  atoms)  (eq.  (A2d)) 

elements of the  Jacobian  matrix - awj  (es. (E15) ) 

coefficient  matrix of the  derivatives of the dependent variable 

vector  (eq.  (E8) or  (F l ) )  

aFi 

integer  representing  the  separation point  between  the  vibrational 

energy  levels  having a temperature TA  and the  energy  levels 

having a temperature  TB 

C 1  constant  coefficient  in  the  relation for  the  characteristic  vibra- 

tional  relaxation  time  (see  eq. (111-llb) ) 

c2 constant  in  the  characteristic  vibrational  relaxation  time 
(see eq. (111-12) ) 

cpj (TI specific  heat  at  constant  pressure  associated with j-th  species 
(energy/mole-OK) 

'pi ,j 

cvi,j  (T)  specific  heat  at  constant  volume  associated with i-th  energy  mode 

(T) specific  heat  at  constant  pressure  associated  with  i-th  energy 

mode and j-th  species (energy/mole-OK) 

and j-th  species (energy/mole-OK) 

EV energy  associated with the v-th vibrational  quantum  level 

Eb-l  energy  associated with the  level  just below that  level  separating 
the  vibrational  levels  having a temperature TA and those having 

a temperature TB 
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gv+1 ,v 

h 

I 

I. J 

k 

energy  separating quantum levels of model  molecule 

(i = AI, A2, or B), see Appendix A 

energy  separating  quantum  levels i and j (eq.  (Bld) ) 

internal  energy  associated  with  i-th  mode and j-th  species 

(energy/mole) 

internal  energy  associated  with  j-th  species  (energy/mole) 

total  specific  energy  (energy/mass) 

element of vector of derivatives (Appendix E and F)  

adiabaticity  factor (eq. (B4) ) 

steric  factor  associated with  collisions  involving  particles 

n and m  (eq. (C4) ) 

factor  accounting  for  effects of anharmonicity on the  transition 

rates  (eq. (Bla)) 

degeneracy  associated with I-th quantum  level and j-th  species 

(eq. ( A m  ) 

g-function  (eq. (11-9) ) 

specific  enthalpy  (energy/mass) 

Planck's  constant  divided by 27r 

partial  enthalpy  associated with i-th  internal  energy  mode and 

j-th  species  (energy/mole) 

"heat of formation"  associated with j-th  species  (energy/mole) 

unit matrix 

moment of inertia  for  j-th  species  (mass x length ) 2 

Boltzmann  constant 

transition  rate  associated with the  vibrational  transitions  from 

the first to  the  zeroth  energy  level  (see  eq. (B16)) 
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(2) 
k l  ,o special "equivalent" transition  rate  associated with the  upper 

vibrational  energy  levels  where kf-, = kl',b X (T) (see Appendix 

B and in  particular  eqs. (B14) o r  (B23) ) 

k g )  (TAT)  forward  transition  rate  associated  with  the  vibration-translation 

interactions  yielding  vibrational states denoted  B (see  eqs. (II-35b) 

or  (11-39b) )(cm3/mole-sec) 

k g )  (TByT)  reverse  transition  rate  associated with the  vibration-translation 

interactions  yielding  vibrational states denoted A (see  eqs. (11-35a) 

o r  (11-39a))(cm3/mole-sec) 

kFeq.(T)  "equilibrium"  dissociation  rate  constant  (eqs. (111-13) or  (C10) ) 
(cm3/mole-sec) 

transition  rate  associated with the  vibrational  transitions i - j 
and 1 -. m  that follow as a result of a bimolecular  collision 

(cm3/mole-sec) 

k. '. l m  
1 YJ  

mj 

m 

N 

NO 

n 

na 

ni 

Pi 

P 

truncation  factor (i refers  to  specific  grouping of energy  levels) 

(see,  e.g.,  eq.  (A29))  (dimensionless) 

truncation  factor  associated with vibrational  specific  heat ( i has 

same  meaning  as in X i) (eq. (A46)) (dimensionless) 

mass of j-th  species  (g) 

m = 2 ni total  particle  concentration  p = mkT 

first unbound vibrational  energy  level  (dissociation  limit) 

Avagadro's  number 

molecular  density  (molecules/unit  vol.) 

atom  density 

density of species i (particledunit vol.) 

probability  that a dissociation  occurs  from  i-th  level  (eq. (Cl) ) 

pressure 

x i x  
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Qij (TI  partition  function  for  the  i-th  internal  energy  mode,  j-th  species 

(es. ( A l ) )  

Qj (TI Qj  (T) = rI Qi (T)  partition  function of the  j-th  species,  (eq. (Al )  ) 
i= 1 

Qj = x QJ rate of production of quantity j per unit  length  along a streamline 
1 1  

(w. (IV-7) ) 

q; (T) vibrational  energy of harmonic  oscillators  having an infinite 

number of energy  levels  separated by a spacing  that is identical 

to  that of the  grouping of energy  levels  denoted i (energy/mole), 

(see, e.g., eq. (A28)) 

RO 

R 

TF 

TU 

t 

vibrational  energy  associated with the  grouping of levels  denoted 

i (energy/mole)  (see,  e.g., eq. (A30)) 

universal  gas  constant 

gas  constant  per unit mass, f (Yi)o Ro 

elements of scaling  matrix  (eq. (E23))  

entropy  associated with j-th  species (energy/mole-OK) (eq. (A7) ) 

specific  entropy  (energy/mass -OK) 

arbitrary independent  integration  variable  (eq. (E9) ) 

gas  temperature (or transitional  or  kinetic  temperature), (OK) 

i = A o r  By vibrational  temperature of lower  or  upper  states, 

respectively, (OK) 

characteristic  "vibrational  temperature"  at which energy  is 

removed by dissociation  (eq. (C7) ), (OK) 

measure of  how rapidly  dissociation  drops off for  the  lower 

vibrational  levels  in  the  preferential  dissociation  model 

(eq. (C4) ) (OK) 

time 
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YO 

Z 

A 

eb-l 

vibrational  coupling  factor  (eq. (11-93) and (C10) ) 

volume of some  arbitrary  element 

fluid  velocity 

element of the  vector of variables (Appendix E and F) 

distance  measured  along  streamline 

anharmonicity  coefficient  associated  with  the  quadratic  term of 

the  vibrational  energy  (eq. (AlOb) ) 

anharmonicity  coefficient  associated with the  cubic  term of the 

vibrational  energy  (eq. (AlOb) ) 

bimolecular  collision  rate  associated  with  collision  involving 

particles  m and n  (eq.  (B3b)) 

compressibility  factor (see eq.  (E3b) and discussion) 

dimensionless  constant  (eqs.  (BlOa) and (B18a)) 

reducing  factor,  dimensionless  constant  (eq. (IV-8) ) 

difference of stoichiometric  coefficients  (eq. (A8d) ) 

concentration of species  i in  units of moles  per unit  total  mass 

(eq. (11-108a) ) 

anharmonicity  parameter 2 , aEA (1 - 6) + (E+ -  EA^) 
(eq. (11-73a) ) 

1 

anharmonicity  parameter 1 , 6 = X-' (T) (eq. (11-73b) ) 

specific  value of vibrational  energy  (energy/mass) of species  i 

(eq. (11-108b) ) 

characteristic  temperature of the b-1 vibrational  energy  level 

(Eb-l/k) 

characteristic  temperature  associated with  energy of separation 

of model  molecule (i = A1 , A2, o r  B) , Qi = Ei/k 

x x i  



eEa,.t,j 

'PO 

P 

7 

characteristic  electronic  excitation  temperature (OK ) of the 

I-th electronic  energy  level and the  j-th  species, - (Ald) ) Ech 
k 

aj ?I2 
characteristic  rotation  temperature, - 

2 5  k (es. Ale) 1 

partial  equilibrium  constant  (eq. ((312) ) 

equilibrium  constant  associated with j-th  species  (eq.  (A8)) 

eigenvalue  (see Appendix E) 

reduced  mass of a pair of particles i and j 

stoichiometric  coefficient of the  i-th  reaction and j-th  species 

(unprimed are  reactants and primed  are  products) 

dimensionless  parameter  (eq. (B8) ) 

mass  density 

scaling  constant  (eq. (E9) ) 

effective  collision  time  (see  discussion  following  eq.  (B3F) ) 

vibrational  relaxation  time  associated  with  i-th  grou  ing of 

vibrational  energy  levels 7. = { rnGf!o [l - exp (- g)]] (eq. (l325) ) 
- 1  

1 

parameter  related  to  the  slope of "rate of quantum transfer" 

(eqs.  (B14c) and (B23) (dimensionless) ) 

measure of the  deviation  from  local  thermodynamic  equilibrium 

of the  vibrational  energy  mode  (eqs. (11-96, 11-97) ) 

angular  frequency  associated with the  spacing E1 0 (see 

discussion  following  eq. (B3f) ) 
Y 

Subscripts 

A,A1 YAZYB specific  groupings of vibrational  energy  states  (see Appendix A) 

D dissociation 
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R 

T 

T-V 

V 

v-v 

0 

1 

t 

* 
* 
I 

A 

[ I  

- (bar) 

- (bar) 

electronic  excitation  mode 

rotational  mode 

translational  mode 

translation-vibration  energy  interchange 

vibrational  mode 

vibration-vibration  energy  interchange 

"low temperature"  value 

initial  value 

Superscripts and Special  Symbols 

transpose  (vector o r  matrix), see Appendixes E and F 

all energy  modes  except  the  vibrational  mode (see Appendix E) 

value of a dependent  variable as determined  in  quasi-steady  zone 

relevant  quantities  (partition  function,  energy,  specific  heat, 

etc.)  associated with a grouping of vibrational  levels are 

evaluated  relative  to  the  separate  lowest  energy state and not 

the  molecular  ground  energy state (see,  e.g., Appendix A) 

units of per  particle  (this  superscript is removed by multiplying 

by  Avagadro's  number) 

matrix  or  vector 

average 

natural  logarithm (when placed  over  the  concentration 

variables yi ) 
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CHAPTER 1 

INTRODUCTION 

The  purpose of this  work is to develop a relatively  simple  mathematical 

model  that is useful for studying  the effects of vibration-dissociation  coupling  in 

fluid  flows.  The  work  may  be viewed as a  logical  continuation of the  sequence of 

papers by Hammerling,  Teare, and Kivel (36),  Treanor and Marrone  (90,  91,  93), 

and Marrone  and  Treanor (58). In each of these cases an  effort was made  to de- 

vise a model  containing  the  smallest  possible  number of parameters  that would 

yield  results  in  agreement with existing  experimental  data. Such a model would 

be of value for  extrapolation of rate processes beyond the  temperatures and 

densities  accessible  to  laboratory  evaluation. Of equal  importance,  the  resulting 

formalism would lend itself readily  to fluid-flow calculations.  The  model  pre- 

sented  here is analogous  in  many respects  to  those  introduced  in  the  aforemen- 

tioned papers, although more  complex.  The  theory is applicable  to  polyatomic 

species  (see,  e.g.,  (41a)),  but only diatomic  species  are  considered  here.  The 

rotational  mode is taken to  be  in  equilibrium with the  translational  (kinetic- 

energy)  mode and only the  lowest  molecular  electronic states are considered. 

However,  instead of the  single  vibrational  temperature  considered  in  the  previous 

papers (36, 58, 90, 91 , 93), two  independent  vibrational temperatures  are  used to 

allow for  the  perturbing effects of dissociation and recombination in the  upper 

levels.  Also,  the  reduced  energy-level  spacing of the  upper levels i s  approxi- 

mately  accounted fo r  as well  as the  anharmonic  oscillator  rates  associated with 

these  levels. 

% 

Historically,  the  subject of energy  exchange  between  external  degrees of 

freedom  (translation) and "internal"  degrees of freedom  (rotation,  vibration, 

dissociation,  electronic  excitation,  ionization)  has  received  considerable  atten- 

tion. In addition to  the  intrinsic  interest  the  subject  commands, it is significant 

in  the  general  field of chemical  kinetics and has  an  important  bearing on many 

gas-dynamical  and  combustion  problems.  Recently  an  increasing  interest  in  gas 

lasers has added impetus  to  the  need  for  understanding  the  mechanisms of 
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molecular  energy  exhange (33, 42, 60). Theoretical  treatment of the  problem is 

impeded by the  complexity  arising  from  the  large  number of interacting  parti- 

cles. During a collision a molecule  in  a  given  energy state (specified  transla- 

tional,  rotational,  vibrational, and electronic  coordinates)  many  undergo a 

transition  to one of many  possible  final states. A satisfactory  theoretical treat- 

ment  must  necessarily  consider  the  likelihood and importance of all of these 

transitions (4, 5, 34, 56). Considerable  research, both  theoretical and experi- 

mental,  has  been  carried out on this  subject, involving  many  specialized  studies 

on rate  constants and collision o r  relaxation  mechanisms.  However,  important 

as the  prior  research is, a  comprehensive  survey of all the  significant  papers 

that  contribute  to  an  understanding of the  complete  problem and that would be 

helpful in  placing  the  present  work in perspective  will not be  attempted.  Instead 

the  reader is referred  to  the books  by  Vincenti and Kruger (97), Clarke  and 

McChesney (22) (an  excellent  source  for  a  review of prior  research),  Stupochenko 

et al. (86), Bradley ( l o ) ,  and Zel'dovich and Raizer (100). Herzberg and  Litovitz 

(41), Cottrell and McCoubrey (23),  and  Nikitin (64) are also  excellent  sources  for 

an understanding of rates and  relaxation  mechanisms. Although a fully  compre- 

hensive  survey will  not be  given, it is worthwhile to  discuss  briefly  a few papers 

that  are  closely  related and  contribute  to  the  underlying  ideas of the  specific 

approach  adopted  here. 

Previously  developed  schemes  for  finding  first-energy-moment  "summed" 

relations of the  population  equations and thus  obtaining  the  simple  relaxation 

equation 

are  basic  to  the  model  to  be  introduced  here. In this  relation q" is the  average 

vibrational  energy  (per  mole), a known function of the  temperature T or  Tv, and 

T (T, p) is a  characteristic  relaxation  time  that  depends on temperature and pres- 

sure.  The equation describes  vibrational  relaxation  in  the  absence of dissocia- 

tion and is often referred  to as the  Landau-Teller o r  the  Bethe-Teller  relax- 

ation  model.  Landau and Teller (49) were the first to  observe  that,  providing 

2 
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the  vibrational  transition  rates  vary  linearly with vibrational  quantum  number, 

as do  those  for a harmonic  oscillator (46,  49), a rate equation  can  be  derived 

from  the  first-energy-moment  relations  that  contains only the  single  character- 

istic  relaxation  time T .  Later Bethe  and Teller (8) identified  the  summation 

quantities  that  appear  in  the  equation as the  thermodynamic  quantity  qm*.  The 

basic  equations  used  were  the  population or  "master"  equations which express 

the  rate of change of the population of each  energy  state. Imbedded in  the 

Landau-Teller or Bethe-Teller  approach  are  the  following  assumptions: (1) the 

vibrational  transitions  occur  step-wise  from  one  vibrational  energy  level  to  the 

next adjacent  level  ("ladder  climbing"); (2) vibrational  transition  rates  vary 

linearly with vibrational  quantum  number; (3) the  energy  levels  are  equally 

spaced; and (4) the  molecular  population  over  the  various  vibrational  energy 

states  is Boltzmann and thus  describable  in  terms of a  single  parameter,  the 

vibrational  temperature  TV. 

The  Landau-Teller  relaxation  equation is a remarkably  simple  result con- 

sidering  the  internal  processes  that it describes.  The  question  arises as to how 

accurately  the  actual  physical  processes  are  represented. In studies by Rubin 

and Shuler (75, 76) and Montroll and Shuler (62), assumptions (l), (2) and (3) were 

imposed and for  the  case of oscillators  subjected  to an impulsive  change  in  heat- 

bath  temperature, a solution of the  complete  set of master  equations  was  obtained. 

It was  shown that,  for  molecules having a  Boltzmann  distribution  initially,  relax- 

ation  occurs  through a continuous  sequence of Boltzmann  distributions.  These 

results add validity  to  the  Landau-Teller  theory.  Early  experimental  studies 

using  shock-tubes  (e.g.,  Camac (20), Cottrell and McCoubrey (23), Losev and 

Osipov (56) have  also  yielded  results  in  excellent  agreement with the  simple 

theory.  However,  more  exact  theoretical  studies  including  the  effects of molec- 

ular  anharmcnicity  (Bazley  et al. ( 6 ) ,  Osipov  and  Stupochenko ( 6 7 ) ,  Bray (15, 16), 

and  Nikitin (65)) suggest  that  at  higher  temperatures  relaxation  occurs with a 

*Landau  and Teller (49) applied the  relaxation  equation  to  the  acoustic  problem 
of sound dispersion  in  gases.  Later Bethe  and Teller (8) used  the  equation  for 
studying  vibrational  relaxation  behind  shock  waves. 

3 



smaller characteristic  relaxation  time.  These  studies  tend  to  support  the 

validity of the  vibrational  temperature  concept  (that is, a Boltzmann  distribution 

of vibrational  energy).  More  recent  experimental  studies of flow in  nozzles  also 

indicate a departure  from  the  Landau-Teller  relaxation model (1, 2 ,  43,  44,  45, 

61,  78,  79,  80). Additional complication  enters  the  problem when the  molecular 

concentration  can  no  longer  be  considered  dilute  (74). One must  then  include  the 

effects of vibration-vibration (V-V) energy  interchange  (15,  16,  66,  74,  88,  92, 

92a,  101), which also  lead  to  departures  from  simple  relaxation  theory  (15,  16). 

On the  basis of the  foregoing  studies it may  be  concluded  that  the Landau- 

Teller  relaxation  model ( 8 ,  49)  accurately  represents  the  processes  occurring 

only when the  upper  vibrational states are not appreciably  populated. When 

large  populations of the  upper  states  exist,  modification of the  theory is required 

to  account  for nonuniform energy-level  spacing  (4) and nonlinear  vibrational 

transition rates (24, 37, 39, 65,  73).  The  major  simplifying  feature  that  the  prior 

studies  suggest  might  remain  valid is the concept of a single  vibrational  temper- 

ature,  that  is,  population  according  to a Boltzmann  distribution  (62,  81,  82,  83,  84). 

When the effects of dissociation and recombination  can no longer  be  neglected, 

additional  complication is introduced.  The  simple  Landau-Teller  theory  for  vi- 

brational  relaxation no longer  applies,  since  chemical  effects by their  very  nature 

suggest a significant  population of the  upper states. These  effects  also  have a 

perturbing  influence  on  the  population  distribution,  yielding  other  than  Boltzmann 

distributions. If the  characteristic  time  required  to  populate  the  upper  energy 

states is comparable  to  or  greater  than  the  time  required  for  dissociation,  vibra- 

tional  relaxation  will also have  an  appreciable effect on the rates of dissociation 

(vibration-dissociation  coupling)  (Wray (99)  and Rice  (72a, 72b) ). Finally,  the 

possibility of coupling of both dissociation and vibrational  excitation with rota- 

tional  excitation should be  considered  (Bauer  (3) and Bauer  and  Tsang  (4)). 

The  foregoing  complications, not accounted for by the  Landau-Teller  theory, 

are summarized  in  the following list: 

(1) Molecular  anharmonicity 

(a) nonuniformity of the  vibrational  energy-level  spacing 
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(b) nonlinear  vibrational  transition rates 

(c) multiple-level  transitions 

(2) Non-Boltzmann  population distributions 

(3) Vibration-rotation  energy  interchange 

(4) For nondilute  molecular  mixtures  the effects of vibration-vibration 
energy  interchange 

and,  in  addition,  the  chemical effects that  occur  according  to  the  following 

mechanisms: 

(5) Dissociation  via  vibrational  excitation 

(6)  Dissociation  via  rotational  excitation 

(7) Recombination  occurring  preferentially  into  the  upper  vibrational 
and rotational  levels. 

Varied  approaches  have  been  adopted  in  theoretical  studies of dissociation 

rates and of the  transition  probabilities  that  appear  in  the  master  equations.  The 

variational  theory of reaction  rates  utilizes  the  basic  assumption  that a reactive 

system  can  be  described by the  motion of a representative point  in  the  phase 

space of the  system (Keck (47) ).  The  procedure  requires  the  computation of 

"trajectories" of these  points  to  determine  the  net rate at which the  represen- 

tative  points  pass  through a particular  surface  in  the  phase  space. By this 

method  Snider (85)* obtained  values of the  effective  dissociation and recombi- 

nation rates  for  the  quasi-steady  zone behind a normal  shock wave (for a de- 

scription of this  zone see Chapters I11 and IV), and  showed that  the  ratio of these 

rates is the  chemical  equilibrium  constant. In this  work,  Snider  considered all 

effects  in  the  above list except  multiple-level  transitions (IC). In an  independent 

study,  Treanor (94) obtained similar  results.  Montroll and Shuler  (62a) con- 

sidered  the  problem of dissociation as a  one-dimensional  random walk (through 

the  vibrational  energy  levels) with an  absorption  barrier  (dissociation).  The 

rate of activation is related  to  the  mean  passage  time of the  "walker." In other 

studies (Keck  and Carr ier  (48) and Brau et al. (12) ), the  investigators  introduced 

*The paper by Snider (85) also contains  an  excellent  summary of prior  research 
results,  in  particular, as applied  to  dissociation and recombination  studies. 
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a diffusion  analogy  for  the master equations (effects (la,   b),  (2), (5) and (7) were 

accounted for).  Vibrational  excitation with eventual  dissociation is thereby ex- 

plained  in  terms of energy  diffusion  through  the  vibrational  energy states. The 

conclusions  arrived at by this method are similar  to  those of the  studies de- 

scribed  above.  These  investigations relate primarily  to  the  processes  asso- 

ciated with dissociation. Benson  and  Fueno (7) using a deactivation  theory, 

obtained  results  applicable  for  the  inverse  process of recombination. 

The  above  investigations  have  contributed to  an  understanding of the  observed 

temperature  dependence of experimentally  determined  rates, as we l l  as indicating 

the types of population  distributions  to  be  expected. It is significant  that  deviations 

from a Boltzmann  distribution are found primarily  in  the  uppermost  vibrational 

energy  levels,  where  the  influence of dissociation  or  recombination is greatest 

(see,  e.g., 11, 12,  13,  48,  84, 94). These  studies  have  been  confined,  for  the  most 

part,  to  the  quasi-steady  zone  where  the  fractional  molecular  population in  each 

vibrational  energy state is constant  and as a result  solutions are relatively  easy 

to  obtain. In this  situation  integration of the  complete set of rate equations is not 

required. 

Few solutions are available  for  the  more  difficult  problem of integration of 

the  complete set of master  equations.  Difficulties  encountered  in  this  task are 

well known (18,  29, 7 7 ) .  The  importance of such  solutions,  aside  from  providing 

a description of the  entire  relaxation  process, is in  obtaining  values  for  the 

"incubation" o r  "induction" time behind a normal-shock wave (11, 12, 13, 58), 

which is the  time  required  to  populate  the  upper  vibrational  energy  levels, ob- 

served  experimentally as a delay  prior  to  the  onset of dissociation  (99).  To 

explain  this  phenomenon, a manifestation of coupling of vibration and dissociation, 

Marrone and Treanor (58) introduced a relatively  simple set of relations  that were 

an  outgrowth of equations  used by previous  researchers (36). The  resulting 

formalism  may  be  considered  an  extension of the  Landau-Teller  model,  since 

the  basic  structure of "vibrational  relaxation"  follows  Landau-Teller  theory and 

additional terms are included  to  account  for  the effects of dissociation and 

recombination. 
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Despite its simplicity  the  Marrone-Treanor  model  contains  most of the 

essential  elements of vibration-dissociation  coupling  and  has  been  widely  used 

(27,  31,  32, 35, 41a,  57,  87, 89, also see discussion  in  86).  Their  model is based 

on  the  assumption  that  the  vibrational  degrees of freedom  may  be  represented 

by a single  vibrational  temperature.  Dissociation  preferentially  from  the  upper 

vibrational  levels is presumed,  the  dissociation  probability  being weighted in 

such a manner  that it decreases exponentially for  the  lower  energy  levels (see 

Appendix C).  The weighting factor  contains a parameter  that  can  be  varied. As 

previously  mentioned,  the  term  that  describes  vibrational  relaxation  in  the 

equations is formally  identical  to  that of the  Landau-Teller o r  Bethe-Teller 

model but involves  different  variables. In one  version  a  truncated  harmonic 

oscillator  was  used as a  basis  for defining  the  temperature  dependence of the 

quantity  qm  (93).  Alternatively, qm was based on the  actual  vibrational  energies 

obtained from  spectra (58). The  "effective rate of dissociation"  that  results 

from  their  model  contains  a  "vibrational  coupling  factor"  that  depends on the 

vibrational as we l l  as  the  translational  temperature.  This  factor is responsible 

for a  delay in dissociation behind a  normal  shock wave.  Thus the  solutions for  

such flows do  exhibit  an  incubation  time  prior  to  the  onset of appreciable  disso- 

ciation.  Treanor and Marrone (90) suggest  that  their  model is not completely 

satisfactory  in  that a strong  temperature  dependence  occurs  for  the  pre- 

exponential  factor  in  the  effective  dissociation  rate and this  is not observed 

experimentally.  Also,  allowance is not made  for  other  complications  given  in 

the  earlier  listing. In particular,  nonlinear  transition  probabilities , deviations 

from a Boltzmann  distribution, and rotational effects were not considered, 

although it is possible  that  an  implicit  inclusion of these effects may occur 

depending on the  choice of parameters. 

In the  present work  the  Marrone-Treanor  model  is  generalized  to  include 

effects (1) and (2), that is, the  effects of molecular  anharmonicity and a non- 

Boltzmann  distribution.  This is done  formally by starting with the  master 

equations and using a procedure  similar  to  that of Bethe and Teller (8). Rota- 

tional effects a re  not explicitly  included.  The  formalism is sufficiently  general, 
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7 however,  that later inclusion of these effects may  be  possible when the  associated 
rate parameters are better  understood.  The  method  follows,  in  principle, a 

suggestion by Carrington (21): "in systems of many  levels, it may  be  useful  to 

combine  some  levels  into  groups , and calculate  average  transition  probabilities 

between  groups. It may  be  that  the  difficulties of interpretation  connected with 

the  significance of the  averages will be less than  the  difficulties  caused by  in- 

sufficient  quantity or  accuracy of the  data  in  the  system  with  the  full  number of 

levels." In the  spirit of these  remarks  an  effort  has  been  made  to hold to a 

minimum  the  number of parameters  that are to  be  evaluated  from  experimental 

data. 

In Chapter I1 the  model  equations a re  derived by means of an  energy-moment 

procedure  operating  on  the  master  equations.  It is shown that by separating  the 

complete  set of vibrational  energy  levels  into  two  sub-groups and assigning  a 

separate  vibrational  temperature  to  each  sub-group,  the  complete set of master 

equations is  reduced  to a set of only four  equations.  The  "reduced"  equations 

are a complete set and are still general  in  that  they  include  the  effects of multi- 

level  vibrational  transitions.  However, as in  previous  investigations (7 ,  8 ,  1 2 ,  

48, 49, 73, 75) , the  generalization is not  continued  throughout the  paper  because 

explicit  representations  for  the  various rate parameters are not available. 

In the  later  sections of Chapter I1 it is shown that  further  simplification of 

the  equations  can  be  made. An additional  independent  separation of the  vibra- 

tional  energy  levels is introduced, below which the  energy-level  spacings a re  

large and the  transition rates small  relative  to  the  corresponding  quantities 

above  the  separation.  The  procedure  for  evaluating  these  quantities is discussed 

in Appendix B. Essentially,  the  procedure  involves  consideration of the "rate of 

quantum transfer"  resulting  from  molecular  collisions.  This  quantity is evalu- 

ated and approximated by linear  segments. Such a procedure  allows  an  extension 

of the  Landau-Teller  theory  in a systematic  manner  to  include  the  effects of 

anharmonicity.  The  thermodynamic  quantities  associated  with  the  vibrational 

mode are evaluated  in Appendix A and it is shown that, with the method  used  to 

approximate  the effects of anharmonicity,  accurate  evaluations of the 
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thermodynamic  quantities  result  (partition  function,  energy, and specific  heat). 

In the  final  section of Chapter I1 the  dissociation and  recombination  terms are 

introduced.  These  terms are treated  in a manner  similar  to  that of Marrone 

and Treanor  in  that  preferential  dissociation is presumed. Only vibrationally 

excited  molecules  that  belong  to  the  "upper  group" of vibrational  energy states 

are allowed to  dissociate.  The  model  equations  that result are  listed at the end 

of the  chapter.  These  equations are not greatly  different  in  their  outward 

appearance  from  those  used by Marrone and Treanor (58). The major  difference, 

aside  from  the  appearance of two vibrational  temperatures and the  inclusion of 

anharmonic  effects, is in  the  vibrational  relaxation  term. It is shown that  the 

proper  inclusion of the  effects of truncation  results  in a term  that is the  same 

as the  Landau-Teller  relaxation  equation  except  for a truncation  factor.  This 

factor is important when the  vibrational  temperatures  are  large. An interesting 

feature of the  model  equations is that  they  reduce  to  the  Landau-Teller  equation 

when the  vibrational  temperatures  are not large. 

At this  stage  the model  equations  contain  parameters  that  must  be  evaluated. 

In Chapter I11 tentative  values of the  parameters  are  assigned and solutions ob- 

tained  for  the  quasi-steady  zone  behind a normal-shock wave. An iterative 

numerical  procedure is developed for this  purpose. A unique determination of 

all  parameters  does not result  from  this  investigation but several  general  state- 

ments  can  be  made. It is shown that when the  level  that  separates  the  regions 

of different  vibrational  temperatures  is  placed  about midway up the  vibrational- 

energy well ,  a highly preferential  dissociation is required  to  achieve  the  proper 

pre-exponential  temperature  dependence of the  effective  dissociation rate. Sep- 

arations  lying  above  the  midpoint  energy  yield  results  in  disagreement with 

experiment. 

In Chapter IV numerical  solutions of the  model  equations  coupled with the 

equations of flow are presented. For flow behind a normal-shock  wave, it is 

shown that  the  midpoint  separation of vibrational  energy states yields  induction 

times  that are about a factor of ten too large  compared with  experimental re- 

sults.  It is concluded from this investigation  that  readjustments of the  tentatively 
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r chosen  point of separation as well as other  parameters of the model are required 

for  agreement. In later  sections of Chapter IV the  model  equations are investi- 

gated  as  applied  to  nozzle  flow. It is shown that  the  characteristic  vibrational 

relaxation  time  that  the  theory  gives  for  such  flows is qualitatively  consistent 

with recent  experimental  results  in  that  it is smaller by a factor of about 1/4 

as compared with results  from  Landau-Teller  theory. Such reductions  in  the 

characteristic  vibrational  relaxation  time,  however, are realized only when 

freezing  occurs  at high  vibrational  temperatures. 

It should  be  emphasized  that  consideration of the  complete  set of master 

equations is complex and numerical  solutions  difficult  to  obtain (18, 77) .  A 

primary  motive behind this  investigation was the  attainment of a smaller set of 

equations  that  retains  the  essential  mechanisms of the  complete set. The 

solutions  demonstrate  that  the  system  obtained  here  can  readily  be  solved 

numerically  in  conjunction with the flow equations. A numerical  procedure 

developed by Lomax  and  Bailey (53) was found to  be of great  value  for  this 

purpose.  Application of the method to  the  present  problem is explained  in 

Appendix E. 

10 



CHAPTER I1 

DERIVATION OF THE VIBRATION-DISSOCIATION  MODEL  EQUATIONS 

In this  chapter  the  basic  equations  required  for a study of the effects of 

vibration-dissociation  coupling will be  introduced. It will then be  shown in a 

formal  manner how this  rather  large  number of basic  equations  may  be  reduced 

to  obtain a set of only four "model" equations.  The  formalism  requires  separat- 

ing  the  vibrational  energy states into two groupings  and  then  assigning a vibra- 

tional  temperature  to  each  group.  The  resulting  system of equations  still  contains 

the  effects of multiple  transitions. In single-step  transitions  (vibrational  "ladder 

climbing''  model)  it is also  demonstrated how one may  include  the  effects of 

anharmonicity by introducing  additional  separations  in  the  vibrational  energy 

states and still retain  the  relative  simplicity of a Landau-Teller  approach (8,49) 

as regards  the  form of the  equations. 

In the first sections of the  chapter only vibrational  transitions  not  leading 

to  dissociation are considered.  Later  the  effects of dissociation  are added  and 

at the  end of the  chapter  the  equations  to  be  studied  further  in  the  subsequent 

chapters are listed. 

11-A. Introductorv  Comments 

The  mechanisms of vibrational  energy  interchange with translation  (abbrev- 

iated T-V), of vibrational-vibrational  energy  exchange (V-V), and of dissociation 

(D) may  be  described by the  following  chemical  equations: 

translation-vibration 

[AzIv -I- Mr Z= 2 [A] + Mr 
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[A21v denotes a molecule  (anharmonic  oscillator)  in  the vth vibra- 

tional  energy  state; [A] symbolizes  the  atoms  obtained by dissociation of the 

molecules [A2]; and Mr represents  some  species,  specifically  designated by 

the  superscript r (r may  denote  atoms,  molecules,  or  some  chemically  inert 

species, e.g., argon),  that  gains  or  loses  kinetic  energy and momentum  during 

the  reaction.  Electronic  states  are excluded from  the  above  description and it 

is assumed  in  the  work  that  follows  that any effect  produced by electronically 

excited  molecules  may  be  assumed  negligibly  small. Such  an assumption is 

perhaps not always  valid,  depending, of course, on the  gas  temperatures  en- 

countered.  Taylor (87) and Brau (13) have  shown that  the  electronic  states  have 

some  effect on vibration and dissociation,  particularly  at high temperatures, but 

that  the  effect  is not large. 

To  facilitate  the  description of the  model a sketch  showing  the  intermolecular 

potential of an arbitrary  molecule is presented  in  figure 11-1. The  various  levels, 

numbered on the  right-hand  side of the  potential  curve, are the  vibrational  energy 

states  attainable by the  molecule.  The  lowest  level is the  zeroth  state and the 

(N-1)th corresponds  to  the  uppermost bound energy  state.  The Nth level  defines 

the  dissociation  threshold and the  dissociation  energy. A molecule  having  vibra- 

tional  energy  exceeding  this  limit  will  have  dissociated  becoming  a  pair of atoms. 

In the  model to be introduced  the  assumption  is  made  that  the  vibrational  energy 

states  can be separated  into two groups, a lower and an  upper,  designated by the 

letters A and By  respectively,  as shown on the  sketch.  The  separation  is indi-  

cated by the  dashed  line  between  the  levels  b and b-1. Once this  separation is 

made,  it is further  assumed  that  the  distribution of energy in each  individual 

group is Boltzmann and hence  expressible  in  terms of parameters  that  are  char- 

acterized as the vibrational  temperatures of the  separate  groups.  Further, only 

the  B-molecules  will  be  allowed to dissociate.  Additional  assumptions  are  also 

included  that a re  not severe so far as the  construction of the  model is concerned, 

but a r e  introduced i n  order  to  retain a form of the  resulting  equations  that  con- 

tains  the  fewest  parameters  possible.  These  assumptions  are as follows: 

1. Dissociation  occurs  preferentially  from  the B states,  that is, dissocia- 
tion  from  the  higher  levels is exponentially weighted over  those  from 
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the  lower  levels  (Marrone and Treanor (58) ). This is indicated by the 
arrows  that are broadened as their  length  decreases. 

The  effect of anharmonicity is accounted for  by  introducing  another 
separation  parameter a. The  energy  levels are taken  to  be  equally 
spaced  above and below this  level and the rates used are harmonic- 
oscillator  rate  relations that vary  linearly  in  terms of the  vibrational 
level  number.  The  spacing for  the  levels  above  the  separation,  however, 
is much  reduced and the  associated rates much greater than  the corre- 
sponding  quantities below the  separation (see Appendix A and B). 

In  applying  the  second  assumption  the  effect of anharmonicity is actually  accounted 

for by approximating  the "rate of quantum  transfer" (see Appendix B), which  oc- 

cu r s   a s  a result of vibration-translation  energy  interchange,  with  linear  relations. 

In this  thesis  the  approximation is carried out  only for  the case of "stepwise" 

transitions and with  only two linear  relations. 

The  significance of the  separation  b,  the  boundary  between  groups A and B, 

is exemplified  further  in  figure 11-2. If one  were  to  plot  an  actual  population dis-  

tribution,  represented by the  ratio nv/n, in  terms of a parameter e,, defined 

by  the  equation 

nv/n = exp(-Ev/kev) 01-4) 

for  some  arbitrary point  in  the  region behind a normal  shock  wave  (Treanor  (94), 

and Keck and Carr ier  (48) ) , one would obtain  the  continuous  curve  drawn  in  the 

figure.  The  ratio nv/n represents  the  fractional population of molecules having 

energy  associated  with  the vth vibrational  energy  state.  The  significance of the 

parameter e, is that,  in  terms of this  parameter, a  Boltzmann  distribution 

would be  represented by a horizontal  line.  The  continuous  curve  in  figure II-2 

illustrates  the  fact  that  the  mechanism of dissociation  perturbs  the  actual dis-  

tribution  from  being  Boltzmann (48,  84, 94). The  model  approximates  the  actual 

non-Boltzmann  distribution by two Boltzmann  distributions  that are described by 

the  upper and lower  vibrational  temperatures,  TA and TB,  respectively. 

The  separations a and b will allow for a generalization of Landau-Teller 

theory  to  include,  respectively,  the effects of anharmonicity and the effects of 

non-Boltzmann-like  population  distributions.  The  assignment of values  to  these 
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quantities is the  subject of the  later  chapters and it suffices  to  state now that  the 

b-level  separation  will  always  have a value  that  exceeds or at  least is equal  to 

that of the  a-level  separation;  that is, 0 < a 5 b < N. 

The  equations  for  the  model a r e  obtained  in a manner  analogous  to  that  used 

by Heims (38)  in that  energy-moment  equations of the  population  distribution a re  

derived.  The  procedure  deviates  from  Heims'  since  the  form of the  population 

distribution  among  the  vibrational  energy  states is assumed and hence not as  

many  moment  relations are required  in  order  to  obtain a complete  set of equa- 

tions.  The  zeroth-moment  equations  denote  the  number of molecules  in  the 

lower and upper  energy  groups (i.e., groups A and B), and the  first-moment 

equations  give  the  average  vibrational  energy  per  diatomic  molecule  for  each 

group.  Four  nonlinear  ordinary  differential  equations  thus  result to describe 

the  model  molecule. 

The  basic  equations  from  which  the  model  equations will be  derived a r e  

described  in  what  follows.  The  general  equations  that  represent  the  net popu- 

lation  gain o r  loss  per  unit  time and volume  for  molecules  in  the vth vibrational 

energy  state  (commonly  referred to as the  "master  equations") are given by the 

sum of the  following partial  contributions.  The  contributions follow according 

to the  interaction  processes  described,  respectively, by the  chemical  equations 

(11-1) through 01-3). 

\- kT  kT with  m=-1,. . . , -jbo) (11-6) 
Ev - Ev-e + equivalent  terms 
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where 

v = O , 1 ,  ......, N - 1  

net  number  density of collision  partners m = z mr 

number  density of collision  partner of kind r 

number of atoms  per  unit  volume 

probability  per  second  per  unit  concentration of oscillators  that 
a  collision  with  species r will result  in  the  vibrational  transition 
from  state i to state j 

probability  per  second  per  unit  concentration of oscillators  that 
a  collision of a molecule in the ith state with another  molecule 
in the ath state  results in the  transitions i - j ,  a - IC, 
respectively 

probability  per  second  per  unit  concentration of oscillators  that 
a  collision of a  molecule  in  the  vth  vibrational  state  with a 
species of kind r results  in  dissociation 

probability  per  second  per  unit  squared  concentration of atoms 
that  a  pair of atoms as a result of a  three-body  collision  with  the 
third body being  the species of the kind r results  in  a  molecule 
in  the  vth state 

vibrational  energy of a  molecule  in  the vth state (= E, v (1 - x. v 
+ yov2), see e.g., Herzberg (40) ) 

translational  or  gas-kinetic  temperature. 

( r=i " >  

One notes  that  equations 01-5) and (11-6) involve  vibrational  transitions  between 

bound states only. The  terms  in  the  summation  over !, in  equation (I1-5), and 

over 2 and m  in equation (II-6) represent  the  contributions due  to  one-step 

transitions,  two-step  transitions, and so on. These  equations are thus  general 

in  that  they  include all possible  transitions  between  vibrational  energy states. 

The  solution of the set of equations  given  by 

9 dt + [%Iv-, + [ 3  
D 

V =  0,1, . . . . . ,  N - 1 
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coupled  with  the  fluid-dynamic  equations and the  atom-conservation  equation, 

would constitute,  in  principle, a solution of the  complete  problem of vibration- 

dissociation coupling. As will be pointed out later, such  solutions are difficult 

to  obtain  even  numerically (18,77) and have  questionable  value  since  the  required 

transition  probabilities  have  uncertain  values. 

The  most  often  practiced  procedure  in  studies of such  equations is to: 

(1) Assume  that  only  single-step  transitions are  important (although 
dissociation  may  still  involve  a  multistep  transition), and thus only 
the first terms  in the  sums  over L? in  equation 01-5) are retained; 

(2) Consider  only  problems  in  which  the  molecular  concentration is 
sufficiently  small  in  a  medium  containing a high relative  concentration 
of inert  diluent  that  the  nonlinear  vibration-vibration  exchange  reactions 
(eq. 01-6))  may  be  neglected. 

These  restrictions  are  generally valid  (Rich and Rehm, 74). In the  analysis  that 

follows,  however,  the first  condition  will  not be applied  immediately  in  order to 

increase  the  generality of the  equations  that are derived,  but  will be applied later 

for  the  system of equations  that are solved. The  second  restriction wil l  be 

adopted since  only  relatively  dilute  molecular  systems are considered  in  this 

thesis on the  grounds  that  the  inclusion of equations 01-6) make  the  resulting 

equations too complex  for  this  study. 

In the  derivations  that  follow,  each term in  equation  flI-8),  representing 

equations 01-5) and (11-7) (excluding  the term  subscripted V-V), will  be investi- 

gated  separately. On the  basis of the declared assumptions  these  terms wil l  be 

simplified and the  equations  that  result,  containing few parameters,  will then be 

the  equations  for  the  model. 

11-B. Development of the  Equations 

It will  be  very helpful for  the  analysis  that  follows  to  make  the  notation  more 

compact by introducing a function g~+,,v,  defined as  follows: 

01- 9a) 

(lI-9b) 
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This  function  denotes  the  net  rate of change of the  population  density of the vth 

state as a result of transitions to and from  the (v + a)th state when these  tran- 

sitions  occur  from  translation-vibration  energy  interchange  involving a species 

of kind r. Further,  to avoid a cumbersome  notation  that is not  immediately 

relevant  to  the  derivations,  the  effect of the  superscript r will be  ignored 

initially.  The  effect of r can  be  neglected  here  since: (1) the kind of collision 

partner  causing  the  vibrational  excitation  affects  the  equations  in a linear  manner. 

The  final  equations  may  be  readjusted  to  include r simply by superposition of 

the  resulting  equations (i.e., by reinserting  the  superscript and reintroducing  the 

summation  over r); (2) only  dilute  molecular  mixtures are of interest  in  this 

study;  the  effects of considering  other  than  the  diluent  species (e.g., argon) as 

the  collision  partner will  be small. 

The  introduction of the  g-function greatly  simplifies  the  notation  required  for 

equations 01-5). Substituting  appropriate  values  for  the  subscripts  in  the  relation 

given for  the  g-function  above,  we  obtain  the  following  simple  form: 

N-V-I V [%IT-, = a c =I gv+a,v - $=I c gv,v-a (II-10) 

~" (II-B-1). T-V Energy  Interchange,  Multiple  Transitions. 

(11-B-la). Zeroth  Moment  Equations 

We now seek a relation  that  represents  the  net  rate of change of the  total 

number of molecules  in  the  A-group of energy  states.  This is easily done by 

summing  equation (11-10) for all the  vibrational  levels,  v,  such  that 0 5 v 5 b - 1. 

The  equation  that  results,  called  the  zeroth  energy-moment  equation  for  A-states, 

is 

where 

nA = "v 
V = O  

(II-12) 
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II I 

Certain  elements  in  the  second  double  summation on the  right-hand side of 

equation @I-11) may  be combined  with terms  in  the  first double  sum.  The  proce- 

dure  for  combining  these  terms  may  be  more  easily followed after  introduction 

of figure II-3. Each  mesh  point  in  this  figure  represents a pair of coordinates  in 

a  two-dimensional  coordinate  space  in  which  one  coordinate  represents  the  vibra- 

tional  quantum  number and the  other  denotes  the  number of steps involved in a 

transition.  It  should be pointed out  that  transitions  involving  the  points  in  the 

triangular  region  above  the  line  v = N-a-1 a r e  not allowed in  (T-V)-type  reactions 

since  the  transitions  associated with  such  points would involve  dissociation. Such 

reactions are contained  in  equations (El-7). The  mesh  points  in  the  crosshatched 

region  correspond to transitions  that  result  in a crossing of the  separation bound- 

ary between  the  states  b-1 and b, shown  in figure 11-1. The  first  term on the 

right-hand side of equation (II-11) is a double  summation  involving  the  g-function 

evaluated  at  each  mesh  point  in  the  closed  region ABCDA. The  second  sum  in- 

cludes  values of g  at  each point  in  the  region  EFDE. We  now rewrite equation 

01-11) to obtain  an  expression  having  summations  with  identical  arguments so 

that  the  $-functions  can  be  related.  This is done by noting  that  each  element  in 

the first sum is to the  left of the  boundary  defined by the  line  v = N-a-1 and each 

element  in  the  second  sum is above  the  line  v = a .  Equation 01-11) may  then  be 

written 

N-b b-i N-1 N-Q+I 

a=1 v=o j=N-b+I V=O 
= c c gv+a,v + c c gv+a,v - c c gv,v-j 

b-I  b-1 

$=I F a  
(11-13) 

The  subscripts and summing  interval on the  third  term 

affecting  the  sum to give 

b-1  b-1-1 
third  term = c gv+a,v 

a=1 v=o 

may  be  altered without 

01- 14) 

We  now observe  that  the  various  double  sums  involve  the  same  argument, and 

we may  therefore  combine  the  appropriate  individual  terms.  This will be shown 

graphically. We recall  that  terms one and  two a r e  double sums involving  gv+a,v 

evaluated at  points  in  the  region ABCDA. However,  the  third  term  involves  the 
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Figure 11-3. Diagram  showing  mesh  points  in a two-dimensional  coordinate 
space  where  one  coordinate is the  vibrational  quantum  number 
and  the  other  coordinate is the  number of steps  involved  during 
a vibrational  transition 
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7 same g-function,  but  evaluated at  each  point  in  the  region AGHA. We may sub- 
tract  these  common  terms and the terms  that  remain are those  values of gv+Q,v 

for  each  point  between  the  pairs of lines  v = b-$ and v = N-a-1, but below 

v = b-1,  that is,  the  points shown in  the  crosshatched  region  in figure 11-3. 

Equation 01-13) thus  becomes 

N-b  b-1 [%I = c c gv+j,v + : Ng-l gv+a,v 
T-V $=I F b - j  $=N-b+i v=b-$ 

N-I N-a-I 

+ c c $V+$,V 
$=b+i V=O 

01-15) 

where  the  first  term  involves  the  mesh  points  in  the  region DICD, the  second  in 

JKLMJ,  and the  third  in NBON. Equation 01-15) may also be  more  compactly 

written  as 

b-1 N-v-I [%IT-, = c c gv+,,v 
FO $=b-V 

b-I N-I 

= c c gj,v 
FO $=b 

The  significance of equation (11-15) is seen if a few of the  terms involved in  the 

summations  are  displayed: 

-7 

1 step 2 step 

3 step 

Each  term  represents  the  loss (or gain)  in  the  total  number of molecules  in  the 

A-group of levels as a result of the transitions,  one-step,  two-step, and so on, 

that  cross  the  separation b. Although equations 01-15)  and (II-16) are  equiva- 

lent,  the  first  expression, equation 01-15), involving  the  sum  over j ,  is more 

advantageous  in  practice  since  the  terms  are  ordered  in a monotonic  sequence 
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of decreasing  values,  that is, as ,8 increases,  each  succeeding  term is less 7 
than  the  preceding  term (see, e.g., 24, 37, 39). The  series  converges SO rapidly , ,, . .  . 

that  in  most cases only the first term is important. 
.. . 

The  equivalent  sum  representing  the  net  rate of change of the  total  number 

of molecules  with  energy  in  the  B-group of states is also  readily  obtained. A s  

noted previously,  equations 01-10) (or 01-15) ) exclude  transitions  that  result  in 

dissociation.  It  then  follows  that  the T-V interactions  conserve  the  number of 

molecules;  that  is, 

(11-18) 

This  identity  may  also  be  proved by summing  equation 01-10) for  all  v  in  the 

range 0 5 v 5 N-1. From  this equation it follows  that 

N-b  b-1 b N-4-1 

= - c c gv+a,v - c c gv+j,v 
j-I F b - j  j=N-b-I Fb-a  

N - j  N-a-I 

- c c gv+a,v 
j=b+i v=o 

or  

where 
N-I 

ng = nV 
v=b 

(11- 19) 

(II- 2 0) 

01-21] 

01-B-lb). Firs t  Energy-Moment  Equations 

The  differential  equations  that  yield  the  change  in  the  net  vibrational  energy 

(first-moment  equations)  for both the  lower and the  upper  vibrational  energy 

states are also  required.  These  are obtained by first  multiplying  each  equation 
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r of the set of equations (II-10) by  the  energy  associated  with  the  respective  level, 
~ 

E,; the  resulting  equations are then  summed  over all the  levels  associated  with 

the  particular group. 

Thus  for  the  A-states we  obtain 

b-1  N-v-I  b-1 v 

dt = c c Ev gv+e,v - c c Ev gv,v-a 01-22) 
T-V v = o  a=1 v=o a=1 

The  order of the  summations is now interchanged and requires  that one  keep 

track of the  regions involved  within the  summations. We introduce  the  expres- 

sion  equivalent  to  equation (TI-14) but  appropriate  to  the  above  equation, and 

there  results 

b N-a-I N-I N-P,-1 

a=N-b-i v=b-a Q=b+l V=O 

b-i b=a-1 

- L c Ev+a gv+a,v 
e=1 v=o 

01-23) 

The first and last   terms  can  be combined and equation 01-23) becomes 

N-b b-i 
+ c c Ev  gv+e,v + 

J=I v=b-j a=N-b+I v=b-j 

N-1 N-a-I 

+ c c Ev gv+a.v 
a=b+1 v=o 

01-24) 

Interchanging  the order of summation and combining  the last  two terms, we 

obtain  the  simpler-appearing  equation 
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b-i N-i 
+ c Ev c ga,v (11-24a) 

V=O Q=b 

The last term in  this  equation  yields  the  gain  (or  loss)  in  vibrational  energy as 

a result of transitions  that  shift  the  molecule  from  the A- to  the  B-group of 

energy  states  (this  term is analogous  to  the  terms  in eq. (11-15) or (11-16) ), 

while  the first term  represents  vibrational-energy  relaxation  within  the  A-group 

of states (note  the  summation  region).  This  point will  be  made  clear in a later 

section. 

The  comparable  equation  that  relates  the  rate of change of net  vibrational 

energy  per  unit  volume  for  the  upper  energy  states  can  be  obtained by first  

deriving  the  energy-relaxation  equation  for  the  complete  molecule and then 

subtracting  that  portion,  equation  (II-24a),  associated  with  the  lower  states. 

The  equation  for  the  complete  molecule,  obtained by multiplying  equation GI-10) 

by E, and summing  over all molecular  energy  states 0 5 v 5 N-1, is 

Interchanging  the  order of summation and again  altering  the  indices and summa- 

tion  scheme  associated  with  the  second  term to obtain  the  same g-function as 

contained  in  the first  term  results  in  the equation 

N-1 N-a-1 N-1 N-a-i 

dt = c c Ev  Pv+a,v - c Ev+a gv+a,v  m-26) a=i v=o a=i v=o T -V 

The  summation  intervals are identical,  that  is,  both  terms  involve  the  same 

mesh  points;  hence  each  term  may  be  combined  individually  giving 

N-i N-a-i 

dt = c c (Ev - %+a) gv+a,v v-27) 
T-V a=i V=o 
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+ p 1 E v n 3  dt v=b - . -$piEvn.]  
T -V v= 0 T -V v= 0 T -V 

N-i N-1-1 
= c c (Ev - %+a)  gv+e,v 

e=o v=o 

b-1 b-j-1 

- c c (Ev - Ev+a,v)  gv+e,v a=i v=o 

N-i N-a-1 
- E c Evgv+a ,v 

j=b+I V=O 

(II-28) 

The  first and second  terms  may  be  rearranged and we obtain 

N-I N-4-1 

+ c c (Ev - %+a) gv+e,v 
e=b V=O 

N-b  b-1 b N-a-I 

- c c Ev gv+e ,v - r, c Evgv+e ,v 
a=1 v=b-e j=N-b+i v=b-a 

N-1 N-a-1 

- c c Evgv+a,v 
J=b+i V=O 

01-2 9) 
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I: i 

or, after  combining  terms, 

N-I N-a-i 
+ c c (Ev - Ev+Q)  gv+j,v 

j=b V=O 

b-i N-I 

- c Ev c gj,v (lI-29a) 
V=O j=b 

The  first two terms,  associated with the B-group  vibrational  relaxation,  involve 

evaluating  the  function  (Ev - E , + Q ) ~ , + ~ , ~   a t  the  points  between the lines 

v = b-a  and v = N-a-1 in figure II-3. The  change in vibrational  energy  due  to 

transitions  that  involve  a  crossing of the  separation  boundary  between  the A- 

and B-groups a r e  given  by  the  last  three  terms in equation  m-29) or the  last 

term in  equation  @-29a). 

@I-B-lc). Vibrational  Temperatures 

The  essential  equations  required to specify  the  vibrational-energy  relax- 

ation  processes  for a molecule  still  excluding  the  effect of dissociation, are 

given by equations (II-15), (II-19), 01-24), and  (II-29) (or  equivalently  eqs. 

01-16), 01-20), (II-24a), and  (11-29a) ). These  equations are a complete  set, 

provided  the  population  distribution  within  each  group of energy  states is known. 

As pointed out  earlier, we assume  that  this  distribution  can  be  reasonably  rep- 

resented by a Boltzmann  distribution,  that is, by 

where i denotes  the  group,  either A or B, and T i  is the  temperature  appro- 

priate  to  the  group.  The  validity of such  an  assumption  has  been shown  by 

Rubin,  Montroll, and Shuler (62, 75, 76,  81,  82,  83,  84)  for  single-step  transi- 

tions only for which  the  transition  probabilities are those of harmonic  oscillator 
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molecules.  For  such  conditions we have TA = TB. Little is known about  the 

effects  associated  with  multiple  transitions as a perturbing  influence on the 

distribution.  Bazley et al. (6),  while  solving a problem  comparable  to  Montroll 

and Shuler's (62) but  including  the  effects of anharmonicity and of some  multiple 

transitions,  has shown that  the  relaxation  processes  are  comparable with  those 

obtained for  harmonic  oscillators.  Thus,  existing  theories  appear to validate 

the  use of the  Boltzmann  distribution  except when dissociation  becomes  impor- 

tant (12, 48,  84, 94). The  perturbing  influence of dissociation  is, of course, 

being  considered  in  the  present  model by the  separation of the  energy  levels 

into two groups  with  separate  temperatures  TA and TB. 

Assuming a population  distribution, in our  case  a  Boltzmann  distribution, 

allows one to  reduce manyfold the  number of dependent  variables  required  for 

a description of the  vibrational mode. Ultimately,  the  problem of determining 

the  vibrational  state of the  molecuiar  system will be  reduced to one of obtaining 

values of the  four  variables nA,  nB, TA, and TB,  where nA and nB are defined 

by equations (II-12)  and 01-21) and  TA  and TB are obtained on the  basis of 

equation (11-30). The  population  density  in any vibrational  level  can  be  expressed 

in terms of the  total  group  population by the  equations 

"A 
QA(TA) 

n =  exp ( 2) (II-31a) 

(11-31b) 

(11-3 IC) 

where  the  energy of the  vibrational  level is subscripted to designate its group, 

that is, 

E = E, 
BV 

b 9 v 5 N-1 
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The A and B  subscripts  may  be  dropped if no ambiguity results. The  functions 

QA(T) and QB(T) (or Qh(T) ) are the  partition  functions  associated  with  the A- 

and B-molecules,  that is, the A and B  grouping of molecular  states, and are 

defined  by 

(II-32a) 

(II-32b) 

01-32~) 

The  partition  function Qh differs  from QB by the  reference  energy.? 

Simplification of the  equations is now possible.  Substitution of the  g- 

function,  equation 01-9), into  equation 01-16) yields 

(11-33) 

We observe  that  the  left  term  involves only nj,  where  b 5 Q 5 N-1, and the 

right-hand term only  nv,  where 0 5 v 5 b-1,  that  is,  the  left-hand  term  con- 

tains  only  B-state  population  densities and the  right-hand term only A-state 

densities.  In view of equations (II-31), equation (II-33) may also be  written 

(II-34a) 

?The  energy  levels  in QA and QB are referenced  with  respect  to  the  molecular 
ground state; in Qb they are  referenced  with  respect  to  the  lowest  energy  level 
of the  B-group of energy  states (see Appendix A for  discussion). 
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and the rate equation  for nB, equation (lI-20), is similarly given  by 

In both of these  equations we have  defined  the  following rate constants: 

(II-35b) 

Similar  relations can be obtained for  the  energy rate equations. We first  

introduce  the  energy  averages  defined  by  the  barred  quantities  given  in  the 

following  identities : 

c- (EBa kTB - ""'1 
(II-36a) 

[- kT 

- EAVI 
(II-36b) 

Substituting  these  relations and equations 01-12)  and  01-21) into  equations 

01-24a)  and (II-29a), w e  obtain  the  energy  equations 
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k b  V=O 

where 

v=o 

(11-37b) 

(11-38a) 

(11-38b) 

= nB [$3 (TB> + Eb]  (11-38c) 

Abrief  discussionof  these  equations is worthwhile.  The  population  equations 

(eqs. (11-34a)  and (II-34b)) are  precisely analogous to the  master  equations  from 

which  they are derived.  Each  equation  contains only two terms, one represent- 

ing  the rate of loss and the  other  the  rate of gain.  The  rate  coefficients  in  these 

equations  contain  the  net effect of all possible  transitions  whether  they  be  one- 

step,  two-step,  etc., or  any combination  thereof.  The rate coefficients also de- 

pend  on the  vibrational  temperatures of the  respective  grouping of levels.  These 

temperatures  may, in principle,  be  obtained  from  equations 01-37), The  func- 

tions 4~ and 4~ are  known single-valued  functions of their  arguments  (see, e.g., 

Appendix A) and once  the  value of these  functions  has  been  found,  one  may  read- 

ily  compute  the  temperatures TA and TB. It is difficult  to  discern  the  signifi- 

cance  of  the  individual  terms  contained  in  equation (II-37) at  this  time.  It will 

be shown in  the  next  section  that  the first term containing  the  double  summation, 

is proportional  to  the  difference 4~ (T) - (TA) in  equation (II-37a)  and 
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(T) - (TB) in equation 01-37b). For  this  reason  they will be called  the 

vibrational-energy  relaxation  terms  (they are analogous  to  the  Landau-Teller 

expression (8,49) that  describes  vibrational  relaxation).  However,  one  can  de- 

rive  such  explicit  relations only for  single-step  transitions and only if the  tran- 

sition  rates are linearly  related  to  the  vibrational  level v. 

The  present  problem  requiring  solutions of equations (11-34) and  (I1-37), 

although less complicated  than  the  original  problem in which  one seeks  a  solu- 

tion of the  complete  set of master  equations,  still  contains  far too many param- 

eters kv,v-l for  easy  evaluation (i.e., if one is to  compare  solutions of the 

equations  with  experimental  data  as  a  means of evaluating  these  parameters). 

These  equations are also too complex  to  be  useful as a model for flow field 

calculations.  It  will now be shown that  further  simplification is possible  after 

the  introduction of additional  approximating  assumptions. 

(II-B-2). T-V Energy  Interchange,  Stepwise  Transitions 

The  formalism  used and the  equations  obtained  in  the  previous  sections a r e  

general.  The  only  limitation  in  the  final  form of the  equations  concerns  the 

assumption of the  population  distributions. Although general  expressions are 

much  sought after, in practice  such  expressions  often  have only limited  utility. 

For  example,  a  solution of the  problem  outlined in the  last  paragraph of the 

previous  section would probably  have  only  limited  value,  since  it would be diffi- 

cult to relate  the  parameters ki,j to experimental  results.  Rather than solve 

this  problem,  additional  approximations wil l  be  introduced  here  that will  result 

in a final  set of vibrational-relaxation  equations  that  are only slightly  more  com- 

plex  than  those  obtained by Landau and Teller  (see, e.g., eq. (I-1) in Chapter  I). 

The  significant  assumptions to be  introduced in this  section  are as follows: 

(1) Vibrational  relaxation  occurs  in a stepwise  manner,  that  is,  the  effect 
of multiple  transitions  may  be  assumed  negligible (iCij = 0 for 
li - jl = a > 1). 

(2) The  effect of anharmonicity  regarding  both  the  thermodynamic  functions 
and the  transition  rates,  may  be  approximated by use of equal  energy- 
level  spacing and harmonic  oscillator  transition-rate  relations above 
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and below some  separation  a,  where  large  energy-level  spacings and 
small  transition  rates are used  for  the  lower  levels and much smaller 
spacings and much larger  rates are used for  the  upper  levels. 

It is worthwhile  to  remark  briefly on these  assumptions.  The  first is generally 

valid,  except  perhaps  for  the  uppermost  vibrational  energy  levels of a molecule 

(24, 37, 39, 67). For  the  uppermost  levels,  however,  the  probabilities  for  mul- 

tiple  transitions  from  any  given  level  are  still less than  the  probability  for  a 

single-quantum  transition  from  that  level (24, 37, 39). As  a matter of interest, 

it will  be shown in the  next  chapter  that if the  separation  b is taken  near  the 

midpoint of the  vibrational  potential  well,  the  observed  pre-exponential  temper- 

ature  dependence is best accounted for by a  dissociation  model  that  has  disso- 

ciation  occurring  primarily  from  the  very  uppermost  level. A nonpreferential 

model for  dissociation  that  presumes  equal  probability of dissociation  from any 

of the  B-group of vibrational  energy  levels  does not yield results  that  agree 

with  the  experimentally  observed  pre-exponential  temperature  dependence. 

Hence,  there is an apparent  consistency  between  the  use of assumption (1) and 

an  equivalent  assumption  for  the  dissociation  model  that wi l l  be introduced in 

a  later  section. 

I 

Assumption (2) is discussed  in Appendix B. It will  only be  remarked  here 

that  the  approximation  procedure  can  be  further  expanded.  The  approximation, 

as used,  depends on the  use of two linear  functions  for  approximating  the  "rate 

of quantum transfer"  that  results  from  single-step  transitions  (see Appendix B). 

Including more  linear  functions and thus  additional  separation  levels would,  in 

principle,  improve  the  model  equations.  It will  be  shown,  however,  that  the 

additional  complication  may not be  warranted  as a result of the  insufficient 

accuracy of the  available  experimental  data  (considerable  "scatter" in the 

data). As more  refined  experimental  measurements  become  available,  addi- 

tional  refinement of the  model  equations  may  also  be  required.  The  formalism 

allows  for  such  improvements. 

As a matter of emphasis,  it is worthwhile to point  out  again  that  the reason 

for  introducing  the  a-level  separation is quite  different  from  that  for  the  b-level 

33 



separation.  The  b-level was introduced to take account of the fact that  the 

distribution of energy  in  the  various  vibrational  states is not Boltzmann.  The 

a-level  allows  an  approximation  for  the  molecular  anharmonicity  effects,  both 

as regards  the  energy-level  spacing and the  transition  probabilities.  The 

assumptions  given  earlier will be  introduced  in  turn  in  the  analysis  that  follows. 

We find on imposing (1) that  the  resulting  equations  are  greatly  simplified. 

Equations (11-35) and  (II-37) become 

.. 
(11-39a) 

01-39b) 

In the  latter two equations  use  has  been  made of the  resulting  simplification 

that  occurs  for  the  averages  in  equations 01-36), which a re  now given by 

EF = ER = Eb-l. Equations 01-34) are unchanged after  the  application of con- 

dition (l), except  that  the  rate  constants k$’ and kR a r e  given  by  equations 

(11-39) rather than  by  equations (II-35). 

_- ” 

- (1) 

As a  result of imposing  condition (l), the  rate  equations (lI-34) may  be 

expressed  simply as the  first  term of equation 01-17), that  is, by 

= -[2] 
T-V 

@I-4 la) 

(II-4lb) 

With these  relations  it is a simple  matter  to  remove  the  explicit  dependence of 

equation 01-40b) on the  rate of change of the  total  number of molecules  in  the 

A-states.  This we do by shifting  the  B-state  reference  energy by substituting 
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i' 

the  appropriate  expression  for GB in  terms of i&, equation (I1-38c),  and then 

combine terms after using  equation (TI-4la) for (dnA/dt)T-v and equation QI-9) 

for  the g-function. The  alternate  form  for  equation (II-40b) that  results is 

The  summation  contains no A-state  quantities.  The  reason  for  making  such an 

alteration is that all terms  in  the series in this equation  involve only B-state 

quantities and thus are to be evaluated at  the  vibrational  temperature TB. This 

simplifies  bookkeeping  in  the  derivations  that follow. 

Further  simplification of equations 01-40a)  and  01-42) now requires  the 

introduction of assumption (2) given earlier. In addition, a procedure is re- 

quired  that is similar in  many respects  to  that  used by Bethe and Teller (8), 

described also by Vincenti and Kruger (97) and Clarke and McChesney (22), 

except  that  rather  than  consider a molecule  that is a harmonic  oscillator  with 

an  infinite  number of energy  levels we have  one  that is truncated and thus  has 

only a finite  number of levels.  The  procedure  depends on  the  fact  that,  pro- 

viding  the  energy  levels a r e  equally  spaced,  substitution of transition  proba- 

bilities  varying  in  a  linear  manner  with  the  level  number  v,  yields series 

expressions  in  the  energy  rate  equations  that  are  summable and may  be  identi- 

fied  with  previously  defined  functions.  The  procedure  depends on the  following 

description  for  the  level  energies E, (a diagram of these  levels is given in 

fig. .A- l )  : 

E v = E  v Ai O s v s a - 1  (II-43a) 

= Ea + EA,(v - a)  a 5 v 5 b - 1 @I-43b) 

= Eb + E A ~ ( v  - b)  b 5 v 5 N - 1 (II-43~) 
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where 

In  addition we require  the  transition  probabilities (see Appendix B) given  by 

L-LV = exp (- x) EAl h,V-I l s v s a - 1  01-46a) 

a s v s N - 1  01-46b) 

01-47) 

01-48) 

The  energy  parameters  Ea,  Eb, and N and the  energy-level  spacings  EA 

and E are formulated and discussed  in Appendix A. The  rate  parameters, 

k,,, and k,,, are discussed  in  detail  in Appendix B. We will  presume  for  the 

present  that  the  above  relations a r e  valid  representations of their  actual  equiv- 

alents and proceed  to  reduce  equations 01-40a) and  01-42) to  the  simplest  form 

consistent  with  the basic assumptions (1) and (2). 

1 

A (1) (2) 

In  what follows  the  key  to  successfully  reducing  the  equations  to a form 

that  involves known functions and very few parameters  depends on an  effica- 

cious  grouping of terms. To this  end,  rather than  work with equations  that 

are extremely bulky and contain  many terms that  can  overly  complicate  the 

?The  subject-of  the  following  chapters  involves  in  part  the  assignment of appro- 
priate  values  for  these  parameters.  It  suffices to state now that 0 < a 5 b < N, 
that  is,  the  b-level,  has a value  that is above or ,  in  the  least, is identical with 
the  value of the  a-level. 
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derivations,  symbols will be  assigned to certain individual terms.  These  terms 

will  be separately  investigated and simplified. One will find that  in  addition to 

greatly  reducing  the  amount of algebra  much  insight is also  acquired as to  the 

expected  form of a more  general  set of equations  that would, in  principle,  even 

better  approximate  the  actual  relaxation  processes. Such generality,  however, 

involves  the  introduction of more  parameters  into a problem  already plagued 

with too many  difficult  to  evaluate  parameters. Such generalization  will not be 

explicitly  exhibited  here  but  the  generalizing method will  be  made clear. 

Concentrating  for  the  present on equation  (II-40a), we  split  the  series con- 

tained  in  this  equation  into  three  parts. Two parts  are  series that  contain 

vibrational  relaxation  terms  that  enclose  the  separation  level  "a," and the  third 

is the  separation  term. We obtain 

Ti T2 
I c 

The  first  term will  be  denoted as Ti and the  second  as T,. There is little 

difference  between  equation 01-42), Ti or T,, except  for  the  summation  limits. 

The  difference is significant  for TI  only because  there  are no vibrational 

states below v = 0. The  algebra  required  to  reduce  these  relations  to  their 

simplest  possible  form is least  for  Ti, and therefore  attention will  be  focused 

first  on this  term.  The  complexity involved in reducing  equations 01-42)  and 

T, is nearly  equivalent.  However,  it wil l  be  worthwhile  to  investigate  equation 

01-42) rather than T,, because  more  insight is gained as regards  the  general- 

ity of the  method.  The  resulting  equation  immediately  provides  the  proper 

expression  for T, by simply  reassigning  different  values  for  the  summation 

indices b and N and  by appropriately  changing  the  subscripts.  These  param- 

eters,  of course, will be  implicitly imbedded in  the  resulting  equations. As a 

matter of emphasis it is fitting  to  point  out  again  that  the  key to the  successful 

application of the  following  procedure is in  the  recognition of sets of terms as 
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being  previously  defined  functions.  These  functions are developed  and  discussed 

in detail in  the last  section of Appendix A. Being  familiar  with  these  functions 

is important,  particularly  those  relating  to  the  vibrational  mode, that is, QAi, 

QA,, QB, qAi, qA,, qB, SAi ,  SA,, L B  and their  primed  equivalents.  These quan- 

tities will  be  reintroduced as required in the  analysis  that  follows  to  facilitate 

the  recognition of specific  terms. 

A A A  

Concentrating now on Ti,  we substitute  equation (II-9) giving  the  g-function, 

equation (TI-31a) for  the  number  density  nv,  and,  after  the  uppermost  term in 

the series is adjusted,  there  results 

(11-5 0) 

A s  already pointed out,  the  partition  functions QAi (TA) as well as the  other 

thermodynamic  quantities  to  be  used are defined  in Appendix A. The  appropri- 

ate  expressions  for E, and ki,j,  equations (II-43a), (II-45a), and (II-45b), 

respectively,  are now substituted  into  the  above  equation and (kit, - ko,i) is 

removed  as  a  factor. One then  obtains 

A 

^( I )  * (1) 
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This  expression is readily  simplified. We observe  in Appendix A that  the  first 

term in brackets is identified  with  the  quantity 

After  substitution of the  appropriate  exponentials  for  the rate ratios,  according 

to equation (lI-46a),  and it is noted again  from Appendix A that 

(II-53) 

EA 
exp (- -$) 

= EAi 
1 - exp (- 2) (II-54b) 

the  second and third  terms  may then  be  readily  identified.  There  results 

6~~ (TA) - (T) (II-55) 

^ (1) A (1) E Ai the  factor  m(ki,o - k,,,), which may  also  be  written mGi:i[l - exp(- -)I, is 

defined as the  inverse of the  vibrational  relaxation  time and is commonly  given 

the  symbol 1 / ~  (see, e.g., 22,97). To  differentiate  this  parameter  from  a 

similar  parameter  that will be  introduced  later, we adopt  the  notation 

kT 

01-5 6) 

Furthermore,  referring  again  to Appendix A, we observe  that  the  factor  given  in 

the  brackets of equation (II-55) above is the  truncation  factor  defined  by 
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(II-57) 

The  characteristics of this function are described  in  detail  in Appendix A. Sub- 

stituting  these  latter two quantities  into  equation (11-55) results in  the  following 

simple  expression  for  the  first  term of equation (11-49): 

@-58a) 

This  expression is worthy of brief  comment  since  it will turn out to be 

equivalent  to  the  form  used  by  previous  workers  studying  vibrational  relaxation 

in flow fields  having  relatively low temperature T. Noting  equation (A30) in 

Appendix A, we rewrite  equation (lI-58a) as  follows: 

(11-58b) 

The  truncation  factor is approximately  unity  provided  TA < (a - 1) EAl/k, With 

this  approximation  (equivalent  to  the  requirement  that  the  population in the  upper 

levels  be  relatively  small  or  that  the effect of truncation  be  negligible),  the 

equation is then  identical  in  form  to  that of Bethe and Teller  (see, e.g., (8) or  

Chapter  I) and is the  equation  used by many researchers  studying  the  effects of 

uncoupled vibrational  relaxation (10, 22, 29,  30, 32, 97). We  will note later  that 

the  other  terms in  equation (11-49) and also the  term in equation (11-42) are 

negligible  in this case.  The above  equation  shows  the correct  use of relations 

for  truncated  harmonic  oscillators. To illustrate  the  differences  between  this 

relation and relations  used  by  other  researchers (57, 58, 90,  91,  93) the  equation 

can  be  cast in a different  form. After the  introduction of equation (A30), the 

above  equation  may also  be  written 

(11-58~) 
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and this  can  be  identified as the  vibrational  relaxation  term  used by the  other 

researchers (see, e.g., Marrone and Treanor (58) ), if the  ratio .CAI (TA) /EAl (T) 

is set  equal to unity  (for  this  comparison we consider a to  be  equal  to N). 

The  quantity is the  truncated  harmonic  oscillator  function  that was used 

by the  other  researchers.  This  point wil l  become  clear as the  other  terms in 

equation 01-49) as well  as  the  term in  equation 01-42) are simplified. It should 

be  evident,  however,  that  the  ratio eAi (TA) / x~~ (T) is not  unity  in  the case 

studied by Marrone and Treanor;  furthermore,  the  use of more  accurate  quanti- 

ties for  the  energy  functions GA (e.g., see 57,  58) is of questionable  value. 

Further  discussion of this  point will  be  deferred  until  later (see last  page of 

section B-4  of this  chapter). 

Ai 

Before  proceeding  with  the  simplification of equation (11-42) it will  be  help- 

fu l  to abbreviate  the  notation by temporarily  assigning  the  symbol T3 to  the 

summation  for -[nB & (Tg)]  that  is, d 
dt  T -V' 

N-2 
T3 = c (E, - Ev+1)gv,v+1 01-5 9) 

v=b 

The  procedure  to  reduce  T3  to  the  simplest  functional  form  parallels  that  just 

employed  to  yield  equations (II-58). We obtain 

as the  expression  analogous to equation 01-50). We note  that  the  third  term 

occurs  here as a result of the  non-zero  lower  summation  limit.  The  fourth 

term is analogous  to  the  third term in equation 01-58). The  last two terms are 

required in order to  obtain  the  appropriate  summation  limits  for  the  set of 

energy  states  being  investigated.  Substitution of the  appropriate  form of the 

energies E, and transition  probabilities  ki,j,  given by equations ( I I - ~ ~ c ) ,  

(II-45b)  and (II-46b), yields 

A 
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, I  

The  denominator in each of the  terms is Qk (TB). It is helpful now to l ist  the 

additional  thermodynamic  quantities  that  will  be  required  here.  They are   a lso 

given  in Appendix A and are  as follows: 

1 

(II-62a) 

01-62b) 

(II-63a) 

(II-63b) 

(II-63c) 
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We  now combine  the terms  in equation 01-61) in  such a manner  that  those  con- 

taining  the  coefficients k,,,  and $), are  grouped  together.  The set of terms 

designated T3 may now be  written 

(2) 

A (2) 
N-l EA, (v-b) (v-b) EA, 

m($i - ko,i) exp[- ] + E& (b-a) [ v=b Qb (TB)  kTB 

TO  obtain  this  expression  the  partition-function  representation Qb (TB)  was 

substituted  in  place of i ts   series  as given by equation 01-62a). Certain of the 

terms above  may  be  immediately  identified.  The first   term is the  quantity 

represented by equation (II-65b). The  third and fourth  terms  together  are  the 

truncation  factor L ;B (TB), equation 01-64), and their  coefficient is given by 

equation 01-63c). W e  thus  obtain 

01--6'7) 
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is similar  to  the  factor  that  appears in  equation 01-55). This  factor  has  the  same 

significance and will  be  similarly  represented by 

01-68) 

which is the  characteristic  vibrational  relaxation  time  associated  with  the  upper 

states. With this newly  defined  quantity,  the terms  mEA  (ka,a-l A (2) - A ka-l,a) (2) may 

be  written - - . 
*, (2) 2 

E ~ z  ka,a-l 
'B $) 

170  

Further  reduction of T, is not possible  without first  introducing  a  special 

identity,  the  significance of which will become  apparent only when Ti, T,, and 

T, are  resubstituted  into  equations 01-49)  and  01-42). This  identity, which will 

presently  be  introduced,  evolves  from  an  investigation of the  quantity  n  E  m 

X kbi,b eXp(EA,/kTB)/Qk(TB),  which  may be  identified as the  rate-of-energy 

transfer  from  the  vibrational  state  b-1  to  the  state  b when these  states have 

Boltzmann  populations  with a vibrational  temperature  TB.  Substituting  the 

appropriate  values  for  the  transition  probability  kb-l,b,  as  determined  from 

equation  (II-45b),  into  this  quantity, we  obtain  the  identity 

B A2 

A 

(11- 6 9a) 

If we express  ko,i and ka-i,a  in  terms of ki,, and ka,a-l by means of equations 

01-46b) and 01-48), respectively,  introduce  the  upper-state  vibrational relax- 

ation  time  given by equation 01-68), and transpose  the  left-hand  term,  the  above 

identity  becomes 

A (2) (2) *. (2) *. (2) 
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We may add this  quantity  to  T,, as given  by  equation 01-67), without  affecting 

the  value of T3. We then observe  that  the  terms  containing  exponentials  may 

readily  be  identified  with a previously  defined  thermodynamic  quantity, as will 

be  demonstrated by  what  follows. When the  above  identity,  equation (II-Ggb), is 

introduced  into  equation (I1-67), there  results 

+ (II-70a) 

express  the  quantity  contained  in  the  first  bracket of the  above  equation  in  a 

form  similar  to  that exhibited  by  equation (11-58b) by substitution of equation 

(II-65a), we can  remove  the  quantity as a factor and obtain 

01-6 9b) 

A A 

- "B EA2 kb-~,b "B EAz kb,b-i 
exe(;) + (11-70b) Qb (TB) Qb (TB) 
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This equation  has  nearly  the  desired  form and  would be  satisfactory  except 

that  it would be desirable if the  second  factor of the  first  term could be related 

to  a  truncation  factor,  say LB (TB), in  order  that  the  entire first term be 

similar  to  that  obtained  for  Ti,  equation 01-58). Such a representation is 

possible if we  note,  using  equation (II-44a), that  EA^ @-a) = Eb - Ea and intro- 

duce  the following equation (A41) from Appendix A: 

(11- 7 1) 

The  first two terms in  the  second  factor  may  be  identified  immediately; if we 

then  multiply  both  the  numerator and denominator of the  terms  that  remain by 

xB (TB) (this is a  valid  operation  since e B (TB) is never  zero) and introduce 

equation (11-65a) to represent  the  denominator, we  obtain  the following desired 

form: 

A A 

"B EA2 kb-i,b "B E Az kb ,b-1 
- (11- 7 2) 

Qb (TB) 

The  parameter  A(T), which has  been  introduced  here, will be one of the 

essential  parameters in  the  model  equations and is defined by 

A = E a -  A E a 6  
Ai 
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X Ea(1 - 6)  (II-73a) 

where 



or  

and 

(II-73b) 

(II-73~) 

4 

The  second  representations  for  both A and 6 as given  above follow directly 

after  equations 01-44a)  and  01-47) are introduced.  The  quantity x(") may  be 

either xR, equation (B14), or  XF, equation (B23). The  parameters  A(T) and 

6(T) will  be  called  anharmonicity  parameters (1) and (Z), respectively;  the 

values of these  parameters  are  discussed  in Appendix B. It is worthwhile  to 

point  out,  however,  that when EA = EA and 6 = 17 the  anharmonicity  param- 

eter (l), A(T), is zero.  Furthermore, both parameters  are  temperature  de- 

pendent,  but  the  dependence of (1) on temperature is only  through (2). It wil l  

turn  out  that when the  effect of anharmonicity  can  be  ignored, 6 is unity and a 
is zero, and  when the  effects of anharmonicity are large 0 5 6 5 1 and A(T)=Ea. 

I 2 

It is helpful now to  recall  the  definition of T,, as given  by  equation (I1-59), 

and rewrite  equation (11-72) as  follows: 

"B EA2 A 

+ 
Ql, (TB) 

kb ,b- i (11-74a) 

The  last two terms in  this  equation are not readily  reduced to a more  simple 

representation involving known functions. One notes,  however,  that when the 

upper-state  temperature  TB is equal  to  the  translational or fluid temperature 

?It will be shown in Appendix B  that 6 = 1 implies  EA = EA and vice  versa. 
2 1 
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T, their  sum is zero. As  a result of vibrational  nonequilibrium  these  terms 

are related to the  net  transfer of energy  across  the  lowest  state  in  the  respec- 

tive  group of energy  levels  under  consideration (in this case the  group  desig- 

nated  B).  Comparable terms do  not exist  for a similar  energy  transfer  across 

some  uppermost  state. In fact,  the  upper  summation  limit is implicitly  embed- 

ded only in  the  truncation  factor XB(TB) (recall  that GB(TB) = GS(TB) XB(TB) 

and that Gg(TB) is independent of any summation  limits).  These  points  are 

best  exemplified by equation (II-74a) rewritten in  such  a  manner  that  the  depen- 

dence of the  various  quantities on the  parameters  are  exhibited.  This  dependence 

has not been  included  in  the  notation heretofore in order to avoid excessive  com- 

plication of the  derivations and of the  notation;  in  order  to know the  parameter 

dependence,  one  must refer to Appendix A. Rewriting  equation  (II-74a),  using 

the  appropriate  functional  representations, we obtain 

x Q' T ;(N-b) E 
B[ A21 

(11-74b) 

We note  that  changes  in (N - b) , the  difference of lower and upper  sum 

parameters,  affects  the  truncation  factor xB ,  and the  last two terms  are af- 

fected  also by changes  in b. It should be  emphasized  that  L(T) is independent 

of either  summation  limit. If we desire to approximate  the  effects of anharmo- 

nicity  better by introducing a new level  separation,  say ai, above  which the  energy 
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levels  have a different  energy  spacing, and also  have  different  linear  transition 

probability  functions, we wil l  note  that all the  functions,  including A,  will  be 

different,  but  only  to  the  extent of their  dependence on the  parameters.  The 

general  functional  character of equation 01-74) will  be unchanged. No further 

remarks will  be  made  concerning  possible  generalization of the method. 

From  these  remarks  the  correct  expression to use  for T, (see eq. (11-49) ) 

should now be  evident.  It is written as follows: 

b-2 
T, = c (E" - %+i) gv+i,v 

v=a 

We recall  that  the  vibrational  temperature of these  states is TA,  since  the 

states  lie below b. Furthermore, in order to retain  consistency  in  the  notation 

we define (TA) "= 4; (TA) and write 

All the  required  relations a r e  now available  such  that  the  rate  equations  for 

the  relaxation of vibrational  energy,  equations (11-4Oa)  and 01-42), may  be  appro- 

priately found. Substitution of equations (II-58a)  and  01-75) into  equation 01-49) 

yields  for  equation 01-40a) 
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(11-77) 

There is a degree of arbitrariness as to whether  the  reduced  spacing E f i rs t  

occurs between  the  levels a-1 and a o r  between levels  a and a + l  without 

affecting  the  evaluation of the series while  the  closed-form  expressions  are 

being  derived  for  the  partition  functions  (see Appendix A). However,  the  choice 

taken (eq. 01-43)) is such  that EA2 = Ea - Ea-l. It follows  that  the  separation 

term  may  be  written 

A2 

(11-80) 
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. . . 

Furthermore, one observes  that  this  term is just  the  negative of the two adjacent 

terms  in  equation (II-77). The  lower-state  energy  rate  equation  thus  becomes 

(11- 8 1) 

The  reasons  for  introducing  the  term  leading to the  identity  given by equation 

(11-69b) should now be  partially  evident.  It  leads  to  a  relatively  simple  repre- 

sentation  for T, and,  furthermore, to the  cancellation of the  separation  term 

in  equation (11-49) (the  term in the series involving  A-state levels  that  separates 

the Ai- and Az-groupings of energy  levels). It wil l  be shown next  that  the  ex- 

pression  introduced wil l  also  lead  to a term in  the  upper-state  vibrational- 

energy  relaxation  equation  that is rate  limiting in its  effect on dissociation. 

Before  making  this  identification we substitute  the  summation  represented 

by T,, equation (11-72), into  equation (11-42) to  obtain  the  upper-state  energy 

relaxation  equation 

01-82a) 

The  significance of the  last two terms in this  equation  becomes  apparent if we 

substitute  the  appropriate  expression  relating  the  quantities GL(TB) and GB(TB), 

using  equation ( I I - ~ ~ c ) ,  and introduce  equations 01-41) into  the  resulting 

equation: 
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I I 

01-82b) 

In this  case,  the  quantity  in  the  above  equation  involving  the g-function is given 

bY 

These  terms do not lead  to  a  complete  cancellation of their  equivalents in the 

above  rate  equation  in  the  manner  that  the  analogous  terms  lead  to  cancellations 

in  equations 01-77), but  lead  to  the  expression  displayed as the  last  term in  the 

equation  that  follows : 

where we have  introduced  the rate  constant kF (TA , T), defined by equation A (1) 

(II-39b), to simplify  the  notation.  The  dependent  variables  nA and  nB 

a r e  not necessarily  related in terms of a ratio of partition  functions  in  the 

manner  that we  found for  n and n  Their  values depend  on the  complete 

solution of the  model  equations. Only  when the  upper and lower  temperatures, 

TA and TB,  are equal will the  ratio of upper and lower  population  densities  be 

Ai A2 - 
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related to a ratio of partition  functions.  The  last  term  in  the  above  equation will 

then be  zero.  It will  be shown in Chapter Tv, when the  parameter  b is appro- 

priately  evaluated,  that  the  last  term  has  the  effect of limiting  the rate of disso- 

ciation;  for  this  reason  the  level  b will be  denoted  the  "rate-limiting"  level. 

At  this  time  the  term  represents  the  net  rate of transfer of energy  across a 

level  b  that  separates  those  levels  with  populations  with a temperature TA 

from  those  levels  with  a  temperature  TB. 

The  equations  considered  thus far are applicable  only  for  translation- 

vibration  energy  interchange in a  gas  containing a relatively  dilute  mixture of 

molecules,  that  is,  for  vibrational  nonequilibrium  processes  that  may  be  prop- 

erly  described by the  first  chemical  equation,  equation (II-1). The  equations 

that  finally  result  (eqs. (11-34a,b), (II-81), ( I I - ~ ~ c ) ,  and eqs. (11-39) ) a r e  suffi- 

cient to describe  the  internal  properties of a gas, provided  the  effects of disso- 

ciation  are  negligible (and also  the  effects of resonance  vibration-vibration 

energy  interchange,  which will  not be  considered  in  this  paper). When there is 

appreciable  dissociation  and/or  recombination,  additional  complication wil l  

ensue. In the  next  section  these  complications will  be  taken  into  account. 

(11-B-3). Dissociation - - 

This  section deals with obtaining  the set  of rate  equations  that  are valid  for 

describing  the  translation-vibration  energy  interchange  involving  dissociation. 

Four  rate  equations,  subscripted D, will result  from  the  analysis, and will be 

combined  with  the  equations found in  the  previous  sections  to  yield  the  relations 

needed for  the  study of vibration-dissociation  coupling. 

The  procedure  for  obtaining  the  model  equations for the  dissociation  pro- 

cess is similar  to  that  already  used. In the  previous  sections  the  effect of 

vibration-translation  energy  interchange,  resulting  in  vibrational  relaxation, 

was  investigated by obtaining  zeroth and first  moment  equations of the popula- 

tion  distribution  using  equations 01-5) as the  basic  equations.  These  moment 

relations were then  simplified by the  introduction of various  assumptions  yield- 

ing  the  final  equations (I1-34),  (11-39), 01-81), and (II-82c), which  contain a 
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relatively  small  number of parameters.  The  procedure involved a method of 

accounting  for  molecular  anharmonicity  effects  both  in  the  energy  level  spacing 

and in  the  transition  probabilities. 

This  section will be  based on equation (11-7). The  procedure  for  simpli- 

fying  this  equation will be  similar  to  that  used  in  the  previous  sections  in  that 

the  zeroth and first  moment  equations of the  population  distribution will again 

be  obtained.  The  procedure wil l  deviate to the  extent  that  the  preferential  dis- 

sociation  model of Marrone and Treanor (58) will  be  introduced  to  obtain  simple 

relations  describing  the  dissociation.  Anharmonicity  effects will  be accounted 

for by using  the  energy-level  spacings  introduced in the  previous  sections.  The 

preferential  dissociation  model of Marrone and Treanor is described in detail 

in  Appendix C. Suffice it  to say here  that  the  Marrone and Treanor model  pro- 

vides a method whereby one may  reasonably  approximate  the  level  transition 

probabilities k ; , ~  and kN,v. Their  scheme is simple and its  employment  intro- 

duces few additional unknowns into  the  problem.  The  essence of the  model is 

that  the  probability of dissociation is exponentially weighted in  such  a  manner 

that  dissociation  from  the  uppermost  levels is most  likely. In the  derivations 

that follow the  Marrone-Treanor  model will  be  slightly  modified. In particular, 

it  will be  assumed  that  dissociation and recombination  involving  molecules in  

the A-group of energy  states are so improbable  that  they may be  neglected. 

^ r  

The  zeroth  moment  expression of the  population  distribution  for  the  inter- 

actions  involving  dissociation is obtained by summing  equation (11-7) over  the 

subscript  v,  including  only  those  states  in  the  sum  appropriate  to  the  group of 

energy  states  under  consideration.  The  result  for  the  A-states is 

As already  mentioned,  however,  dissociation and recombination of molecules in 

these  states is assumed to be  extremely  improbable.  Therefore 

Ar Ar 
kv,N = kN,v v % b - 1  (II-84) 
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and we have [%I, = 0 . .. 

Similarly,  the first moment  relation of the  A-state population distribution, 

obtained by multiplying  equation 01-7)  by E, and then  summing, is also  zero; 

that  is, 

["A :A (TB> ID 
d t  

= o  (11- 8 6) 

The  direct effect of dissociation  will  then  only  be felt by the  upper  group of 

molecular  energy  states. 

Before  proceeding with the  derivations it will  be  helpful to remove  from  the 

equations  the effect of the  dependence on r ,  that  is, on the kind of species in- 

volved in  the  collision.  This may be  done by either  temporarily  ignoring  the 

effect, as was  done earlier,  or  by removing 

procedure. We do  the  latter by writing 

- - 
LL A 

where  the rates k, N and  kN,v a re  defined , 

it  by an  appropriate  averaging 

by the  averages 

(11-87) 

(II-88a) 

(11-88b) 

As previously  remarked,  only  dilute  molecular  mixtures are being  considered; 

that  is, we assume  that  the  mixture  contains  relatively  small  concentrations of 

molecules and of atoms  obtained by molecular  dissociation,  plus  some  inert 

species  that is the  major  constituent (e.g., argon). If the population  fractions 

mr/m  are sufficiently  small for the  molecules and reacting  atoms  compared 

with  that for the  inert  species,  equation @I-87) may be accurately  represented 
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A 

if the  quantities  k are those of the  inert  species only. To  simplify  notation we 

will  henceforth  ignore  the bar on k. 
A 

Using  the  equations  given  above we now write the  zeroth and first  moment 

expressions  for the  B-group of molecular  energy  states  as  follows: 

(11-89) 

[ nB :B (TB> ID N-i A N-i 

v=b 
= - c  

d t  v=b k ~ , N  + kNyvEvnim (11-90) 

where nB  and  GB(TB) are the  quantities  defined  previously by equations (II-21) 

and  (II-38b). The  transition  rates k, N and kNYv peculiar  to  the  preferential- 

dissociation  model,  are  derived in Appendix C (see eq. (C14)).  The  expres- 

sions  given  in  the  appendix  may  be  substituted  into  the  above  equations. In 

A 

Y 

N-i  N-i 
addition, if one  notes  the  identities pv = 1, Evpv = GB(TF), and 

v=o v=b 
N-i 

Evpveq. = GB (- Tu),  we  obtain  the  following  equations: 
v=b 

(11-92) 
A 

where  the  quantity kFeq (T) is the  equilibrium  dissociation  rate (i.e., the  rate 

applicable when the  vibrational mode is assumed to be in equilibrium).  This 

quantity is discussed  further in Chapter In. The  function KB (T) is the  partial 

equilibrium  constant (see Appendix C,  eq. ('213) ); the  quantities pv are  norma- 

lized  probabilities  that are  also  discussed in  AppendixC; and the  factor  V(TB,T), 

called  the  vibrational  coupling  factor  after  Marrone and Treanor (58), is a known 
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function  containing  ratios of upper-state  vibrational  partition  functions as 

follows (see Appendix C for  discussion): 

QB (T)QB 
v(TB,T) = 

QB ( T ~ >  QB (- Tu) 
(11- 93) 

The  variable  TF is the  characteristic  temperature  at which  energy is removed 

by  dissociation  (distinct  from  the  dissociation  temperature,  8D; see Appendix A) 

and is defined as follows  (from eq. (C7) )  

1 1 1 1  

TF TB TU 
- @- 94) 

The  negative  quantity  TU (a constant)  in  the  above  relations  may  be  considered 

as the  characteristic  "vibrational  temperature" (pointed out by Marrone and 

Treanor  (58)) at which  energy is returned to the  vibrational  mode  after  recom- 

bination.  The  value of TU  also  describes how rapidly  the  dissociation  prob- 

ability  drops off for the  lower  vibrational  energy  levels.  The  assigned  value of 

TU is discussed  in  the  next  chapter. 

(II-B-4). Combined  Effect of Vibrational  Excitation and Dissociation 
". 

The  model  equations  obtained  in  the earlier sections,  equations 01-34), 

01-81), and 01-82c), may now be  generalized  to  be  valid when the  effects of 

dissociation and recombination a r e  important.  The  generalization  for  the num- 

ber  densities  requires  the  superposing of equations (II-34), 01-85), and  (II-91) 

(see, e.g., eq. 01-8)  and the  discussion  following  that equation).  The  result is 

(II- 95 a) 

The  energy  rate  equations  are obtained  by  superposing  equations 01-81), 

(II-~ZC), and  (l1-86), 01-92), respectively. We obtain 
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01- 9 5 ~ )  

(11- 95d) 

In equation 01-95c) the  densities  n and nA2  have  been  expressed in terms of 

the  dependent  variable  nA and appropriate  ratios Of partition  functions  (See, 

e.g., eq. (A19) in Appendix A). 

Ai 

The  above  equations are cumbersome  in  their  present  form, and a more 

concise  formulation is desirable. With this  in mind the  following  notation wil l  

be adopted. 
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01- 97b) 

There is some  redundancy  in  the  above  notation,  equations (II-96), since 

qA = qB  and hence 8 4  = QB when TA = TB.  However, this  redundancy is 

removed in equations (11-97). The  quantities 8 and are not necessarily 

equal  even when the  temperatures TA and TB are equal.  The  quantities 0 

defined  above  may be  considered as measures of the  departure of the  respective 

grouping of vibrational  energy  levels  from  local  thermodynamic  equilibrium. 

When the  argument  temperatures  are  equal,  these  quantities  are  zero, and as  

the  differences of the  argument  temperatures  increase  in a uniform  manner  the 

quantities  themselves  also  increase  in  a  uniform  manner. In addition  to  the 

foregoing we also  write 

A00 A00 A 0 0  no0 

2 

A2 

(II-98a) 

(11- 98b) 

This  notation  has  been  used  previously by Marrone and Treanor (58,93).  The 

first  expression  denotes  the  rate  at which  molecules  dissociate and the  second 

is the rate at which  molecules a r e  formed as a result of recombination.  That 

these  expressions  apply  appropriately  to  the  molecules and not just  to  the  upper 

grouping of energy  states is evident if we sum  equations 01-95a)  and  01-95b) 

and note  that  n = nA + nB is the  total  molecular  density  including all vibrational 

states. 

We now rewrite equations 01-95) using  the  notation of equations 01-96), 

01-97), and  01-98). There  results 

cn[- 9 9a) 
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(11- 99b) 

The  above  equations  together  with  the  atom  conservation  equation 

n + - = nA + nB + - = constant "a  "a 
2 2 (TI- 9 9e) 

constitute  the  complete  set of equations  required  to  determine  the  internal 

properties  (vibrational  mode) of the  gas and thereby  the  effects of vibration- 

dissociation  coupling.  Since  these  equations  are  a  complete  set  it is perhaps 

fitting to summarize  the  physical  significance of the  various  terms and then 

compare  these  equations  with  those  used by the  other  researchers. 

The  individual terms in the first  two equations are  easily  identified.  The 

terms  in  equation @I-99a) represent  the gain and loss of the  A-state  molecules 

due to the  transitions  yielding  B-states.  The  first  term  in  equation (TI-99b) 

represents  the  converse  processes,  that  is,  the  net  effects on the  B-states  due 

to  the  transitions  that  yield  A-states.  The  second and third  terms  represent 

the  loss and gain of B-state  molecules as a result,  respectively, of molecular 

dissociation and recombination. 
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The  energy  equations QI-99c) are slightly  more  complex  than  the popula- 

tion  equations  just  described.  The  terms  within  the  braces of the  A-state 

vibrational-energy  equation (II-99c) represent  the  relaxation of vibrational 

energy  for  the  subgroups A, and A, of the  A-states  where  each  sub-group  has 

different  associated  characteristic  relaxation  times.  The first term in  the 

braces is for  the  subgroup of states denoted Ai that  has an associated  charac- 

teristic  relaxation  time TA and the  second  term is for  the  subgroup denoted 

A, that  has  a  relaxation  time 7 It is worthwhile  to  remark  that  although 

TA, < T A ~ ,  this  effect is counteracted by the  partition-function  fractions 

QA,/QA and QA2/QA. As a  result,  the  lower  state  vibrational  relaxation  de- 

pends  most  strongly on the  first  term, in particular, when the  temperature TA 

is not large (e.g., see Chapter IV). The  third  term in equation (lI-99c) repre- 

sents  the  rate of gain (or loss) of vibrational  energy  from  the  A-states  due  to 

transitions  from  B  to A states (or the  reverse).  The  first  term in equation 

(lI-99d) describes  the  vibrational-energy  relaxation  occurring in the  B-states. 

The  second  term is the  converse of the  similar  term  in equation  (II-99c),  while 

the  third and fourth  terms  represent  the  loss and gain of the  vibrational  energy 

of the  B-states  due  to  dissociation and recombination.  The  last  term  represents 

an additional  gain (or loss) of net  vibrational  energy  due  to  the  interaction with 

the  translational mode.  Such an  effect  arises when molecules  make  transitions 

from a system  at one temperature TA to  a  system  at a different  temperature 

Tg. This  term is zero when the two temperatures are equal. It is difficult  to 

ascribe a direct  physical  significance  to  this  term,  because of the  manner  in 

which it was introduced.  It will  be shown  in Chapter IV that a similar  term 

yields a rate-limiting  effect  on  the  rate  equations. In this  respect  the  term may 

produce  the  effect  analogous to the  l'bottle-neckl'  discussed by Bray (14) and  by 

Pritchard (71). 

1 

A,. 

It is worthwhile  to  compare  these  equations (II-99) with  those  used by 

Marrone and Tremor  (58) in their  study of vibration-dissociation  coupling.  In 

the  Marrone-Treanor  model  the  assumption was  made  that  the  distribution of 

energy in the  vibrational  energy  states  can  be  described by a single  vibrational 
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temperature TV. Here we have  introduced an additional  temperature  into  the 

description.  Furthermore,  in  the  Marrone-Tremor  model  the  effects of 

anharmonicity  were  accounted  for  only  to  the  extent  that  more  accurate quan- 

tities  for  the  thermodynamic  energy  function were used  (it will  be shown that 

this is not  essential).  It  was not possible  with  their  formulation to account  for 

effective  decreases in characteristic  vibrational  relaxation  time  for  the  upper 

levels  that  occur as a result of molecular  anharmonicity. 

Although the  model  presented  here  contains  additional  detail as regards  the 

description of the  vibrational  degrees of freedom,  it  also  includes  additional 

complication.  There  may  be  problems  where  the  additional  complication is not 

warranted and the  Marrone-Tremor model will  be of value. With this in mind 

it is worthwhile to investigate  the  functional  form of the  rate  equations  derived 

in this  paper as the  complexity is reduced by further  assumptions. 

We first  assume (58,93) that a single  temperature is appropriate  for a 

description of the  vibrational  mode,  that  is,  TV = TA = TB. We observe  that 

the last term  in  equation (II-99d) then  vanishes.  The  subscripts A and B are  no 

longer  significant and we, therefore,  can  combine  equations (II-99a) and  (11-99b) 

to obtain 

Likewise we combine  equations (II-99c) and (11-99d) to  obtain 

(II-100) 

(II-101) 
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where we have  used 

A more  useful  formulation of the  above  equation is obtained by first relating  the 

densities nA and nB in  terms of the  net  molecular  density  n and appropriate 

ratios of partition  functions.  There  results 

+ 

+ 

We then  combine 

formulation 

the  second  pair of terms in braces  to  obtain  the  desired 

(11-103a) 

where  the  following  relations  have  been  introduced,  consistent  with  the  previ- 

ously  defined similar  quantities: 

QA2-B(TV) = QA2(TV) + QB(TV) (II-104a) 

The  subscript A2-B is used  to  denote  the union of the  vibrational  states 

contained  in  the  groups A2 and  B. 
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v Equations (II-100)  and  (II-103b) are analogous  to those  used by Marrone and 

Treanor (58). We observe,  however,  that  to  account  for  the  effect of anharmo- 

nicity  it is not  sufficient  merely  to  use  more  accurate  values  for  the  vibrational 

energy  function 6 in  the  same  manner as Marrone and Treanor, but an addi- 

tional  term  must  be  introduced.  This  term is the  second term given  in  the 

braces of equation (11-103b). If we are able  to  neglect  the  effects of anharmo- 

nicity  (that is, if h(T)/GA+(TV) = 0 and E A , / E ~ ,  =: 1) the  terms in braces 

may  be  combined (see, e.g.,  eq. (A19) in Appendix A). Equation (II-103b) may 

then  be  written as follows: 

where 

(II-105) 

(11-106a) 

(II-106b) 

The  exclusion of subscripts on the  relevant  quantities  denotes  that  the  vibra- 

tional  states  are  all  considered  together  as  a group.  The  representation given 

above,  with  the  exception of the  dissociation and recombination  terms,  is  simi- 

la r  to  the  form of equation ( I I - ~ ~ c ) ,  which  prompted  the  previous  remarks 

(given after eq. (II-58c) ). In this  equation  the  effects of anharmonicity  are 

assumed  negligible (or ineffectual), and it is only  the  existence of the  truncation 

factor  ratio  X(Tv)/I:(T)  that  causes  the equation  to differ  from  that used by 

Marrone and Treanor (58). The  differences  in  the  equations  are not important 

provided  that  the  temperatures  T and TV  are  both  much less than  the  charac- 

teristic  dissociation  temperature 8~ = En-l/k.  The  truncation-factor  ratio is 

then of order unity. For  this  case,  however,  there is negligible  dissociation 

and the  problem  is'not of great  interest. At the  higher  temperatures,  say 

T = 16,500' and TV = 300"K,  the  factor  X(Tv)/I:(T)  for  the  example  case of 

molecular oxygen is about 3, and hence  the  differences  become  important and 
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the  Marrone-Tremor  formulation  questionable.  This is discussed  further in  

Appendix D. 

11-C. ~- ~ The Rate Equations  Applicable  to  Fluid-Flow Problems 

In the  previous  sections  the  model  rate  equations  have  been  derived  that 

are applicable  for  studies of vibration-dissociation  coupling. In these  equations 

the  time  derivatives  have  been  introduced  without any discussion  regarding 

their  significance.  To  apply  such  equations  to  problems  involving a moving 

fluid requires  that  some  consideration  be given to these  derivatives.  Formally, 

the  equations  that  have  been  derived  apply  to a constant-mass,  constant-volume 

system  such as provided by a closed  rigidcontainer. To be applicable to a 

moving fluid this  constraint  must  be  removed.  The  procedure  for  doing  this is 

described  clearly by Vincenti and Kruger (p. 248 (97) ). Briefly, we let u rep- 

resent any  one of the  variables  (per  unit  volume)  nA, nB , (nAGA), o r  (nB GB). 
The  equations  applicable to fluid  flows, if w e  neglect  diffusion  effects,  are  given 

by 

- "- DZ 1 d a  
Dt P dt 

- (II- 107) 

where is the  intensive  (per  unit  mass)  counterpart of the  variable u (e = pz) ,  
and - is the  substantial  or  material  derivative (E = a + ?V) . The  variable 

v is the  mass  velocity of the  fluid.  Since  the  equations  for  the  derivative  du/dt 

have  been  derived  for a closed  fixed-volume  system,  the  density p may  be 

taken  inside  or  outside  this  derivative as we wish. 

D D 
Dt 8t 

-c 

The  equations  derived  previously,  equations  @-99), are  readily modified to 

a form  that is applicable  for flow field calculations by simply  changing  the  de- 

pendent  variables to the z quantities.  The  equations will  be  listed below  in 

terms of the  appropriate  variables, and this  list will  serve  as  a  summary of the 

results  heretofore  obtained.  The  intensive  variables  yi and ~i corresponding 

to  the  quantities are defined by 

m = A, B, or a (II- 108a) 
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I I 

~i = 7-9. = N 4 
1 1  i o i  

i = A,  A',  A,, or  B (II-lO8b) 

where No is Avogadro's  number.  The rate  parameters  in  the  equations are 

defined  according to the  relations 

kgeq. V) = NO 'ceq.(T) (II- 10  9a) 

With these  quantities  the  rate  equations  become? 

(rr- 11 Ob) 

(11-ll0c) 

tIn  equations (11-110) the  effects of the  type of collision  partner have  been re- 
introduced  into  the  equations.  This  requires  introducing  the  superscripts and 
sums for r. These  equations are the model equations  for  the  reactions (11-1) 
and (11-3) when the  effects of vibration-vibration  energy  interchange (11-2) may 
be considered  negligible. 
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i 

(11-llOe) 

The  last equation is obtained  by  differentiating  the  atom-conservation  equation 

(11-99e). The  molecular rate terms  subscripted 

(11-lllb) 

F and R are  defined  by 

Y r  Y,  kkeq.(T) (11-llla) 

The  constants Ob-1 and @A2 are characteristic  temperatures  defined,  respec- 

tively, by 8b-1 = Eb-l/k and = E /k. The  quantity Ro = kNo is the 

universal  gas  constant.  The  symbols  containing  a  caret ( A )  differ from the  like 

quantities without the  caret by the  factor No, Avogadro‘s  number. 

2 A2 

An alternate  form of these  equations  that  turns out to  be  more  useful  for 

numerical  work  (see,  e.g., Appendix F) is obtained by re-expressing  them  in 

terms of the  dependent  variables Y A Y  YB, TA, TBy and Ya . The bar  here de- 

notes  that  these  quantities are  natural  logarithms of their  unbarred  equivalents, 

that   is ,  

- - -  

?A - jnYA 
- (11-112a) 

Ya - anya - (11-112c) 
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7 The rate equations  expressed  in  terms of these  quantities are 

(11-113a) 

L 

"I 

(11-113~) 

1 

(II-113e) 

?This equation  may  be  obtained  from  equation (11-82b) o r  by appropriate 
arithmetic combination of equations (11-110). 
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where  the  specific  heats C v A ( T ~ )  and C v B ( T ~ ) ,  defined  by  the  derivatives 

dqA(TA)/dTA and  dqB(TB)/dTB, respectively, are discussed in Appendix A. 

The  following  table lists the  quantities  contained  either  explicitly or 

implicitly  in  the rate equations (11-110) or  (11-113); alongside are the  equation 

numbers of the  formulas  that  may  be  used  to  evaluate  the  indicated  quantities. 

Table 11-1 

Table of Formula  Numbers of Quantities  Contained  in  the  Rate  Equations 

Description 

Reverse  transition  rate, 
lower  levels 

Forward  transition  rate, 
lower  levels 

Forward  dissociation  rate, 
upper  levels 

Partial equilibrium  constant 

Equilibrium  constant 

Partial  vibrational  partition 
function 

Measure of departure  from 
equilibrium of nontruncated 
harmonic  oscillator 

~~ 

Equation No. 
(Quantity) 

- 
(II-39a) 

(II-39b) 

(111-13) 

(C 13) 

(A8) 

(A14a) 

' (A14b) 

(A14a)+(A14b) 

(A14c) 

tA18) 

(II-96a) 

Equation No. 
(Quantity Primed) 
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Table 11-1 (Continued) 

Description 

Measure of departure  from 
equilibrium of truncated 
harmonic  oscillator 

Average  vibrational  energy 
of nontruncated  harmonic 
oscillator 

Vibrational  energy of trun- 
cated harmonic  oscillator 

Truncation  factor 

Equation No. 
(Quantity) 

(11- 96b) 

(TI- 9 6 ~ )  

(TI- 97a) 

(11- 97b) 

(11- 97c) 

(A28) 

~- 

Equation No. 
(Quantity Primed) 
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Table IF1 (Continued) 

Description 

Vibrational  specific  heat 

Coupling factor 

Characteristic  temperature 

Anharmonicity  parameter 1 

Anharmonicity  parameter 2 

Slope  function 

Slope  function 

Vibrational  relaxation  time 
lower  states 

Vibrational  relaxation  time 
upper  states 

Ratio 

Equation No. 
(Quantity) 

(A44a) 

(A44b) 

(A47a) 

(A44c) 

(A47b) 

(I1-93),(C-10) 

(II-94),(C7) 

(II-73a),(B26) 

(11-73b) 

(B28a) 

W 8 b )  

(B25a) or  (m-lla) 

(B25b) 

(B25c) 

Equation No. 
(Quantity Primed) 

The rate equations (II-110) o r  (11-113) a re  still sufficiently  general to be 

applicable  to flow fields  that are spatially  multidimensional and unsteady. Such 

generality,  however, will  not be  considered  in  the  chapters  that follow where 

only  steady  one-dimensional  flows are  investigated. A more  convenient  notation 

for  the rate equations is given  by 

71 



d Z  
dx 
” - 

(II-114a) 

(II-114b) 

where Z denotes  either yA, yB, yay cA,  TAy or  TB.  The Qz quantities 

represent  the  differential  change of the  associated  quantities  along  streamlines 

and are  obtained directly by dividing  the  right hand side of either  equations 

(II-110) or  PI-113) by the  mass  velocity v. 

The  rate  equations  also  contain a number of basic  parameters  that are for 

the  most  part  dependent on the  molecular  species  chosen  to  be  investigated,  in 

particular,  the  quantities k,,, , kl,,,  A(T), EA,, E N, a,  b,  kFeq,(T), and TU.  

Once  appropriate  values are assigned  to  these  quantities,  one  can  investigate 

the  effects of vibration-dissociation  coupling  on fluid flows.  The  next  chapters 

will  be  directed  primarily  toward a study of these  quantities. 

(1) (2) 
A2 
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CHAPTER III 

SPECIAL SOLUTIONS OF THE  MODEL  EQUATIONS 

A set of rate equations  applicable  for  studies of vibration-dissociation  cou- 

pling was derived  in  the  previous  chapter.  There  remains,  however,  the  problem 

of assigning  values  for  the  embedded  parameters. A s  anadditional  complication, 

many of the  parameters are not  constants, but are functions of temperature. 

Unfortunately,  there is no simple  procedure  available  for  this  problem. One 

must  specify  values  for all of the  quantities  before a solution  can  be  obtained, 

and only after one has  compared  the  solutions with observed  (experimental) 

data  can  the  parameters be  confidently  evaluated. It  turns  out  that  the  values 

of the  parameters have  to  be  tentatively  assigned and the  results  studied.  These 

values are  altered and the  effect of the change is then  investigated. In this  man- 

ner one  may hope to obtain  a  final set  that  effects good agreement when the 

solutions a r e  compared with experimental  data.  The  problem is further  com- 

plicated by the  fact  that the complete  solutions of the  rate  equations  are  rela- 

tively  costly both from  the  point of view of expense and of computer  time,  since 

the  solutions  require  an  integration of the  model  equations and in addition  the 

equations of flow. These  equations  are  nonlinear  and  require  electronic  machine 

integration.  Fortunately,  there  are a set  of special  solutions  that do not require 

numerical  integration  and,  therefore, are relatively  easy to obtain. In particular, 

in  the  quasi-steady  region  behind a normal  shock  wave,  to  be  described  later, 

certain  combinations of the  rate  equations  may  be set equal  to  zero (it will  be 

shown that  in  this  region  the  quantities  TA,  TB, and Y B/ yA a r e  constant) and 

the  resulting  equations  solved. An investigation of these  solutions  yields  con- 

siderable  insight  into  the  effects  that  occur  as a result of varying  the  values of 

embedded parameters and thus are of great value. This  chapter  concerns  an 

investigation of the  effect of changes of the  embedded parameters on the  quasi- 

steady  solutions. 
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It is  well known (see, e.g., 11,  1 ~ 5 , 90, 94) that  the  region behind 

a normal  shock wave, subject  to  vibration-dissociation  coupling,  can  be  sepa- 

rated  into  three  rather  distinct  zones, one of which will be  discussed  in  this 

chapter.  The  justification  for  this  separation will be  made  clear  (Chapter IV) 

when the  complete  numerical  solutions are exhibited  showing  the full  relaxa- 

tion  to  equilibrium behind a normal  shock wave. For  the  present,  the  zones 

will merely be described with an eye  to  lending  purpose to the  solutions to be 

obtained. In the  order of their  occurrence behind  the  shock wave the  zones are: 

(1) the  transient  zone,  immediately behind the  shock,  in which vibrational 

relaxation  occurs and where  chemical  effects are negligible; (2) the  quasi- 

steady  zone  where  both  the  changes  in  the  fractional  molecular  population, 

nv/n, of the  vibrational  energy  states,  and  the  effect of atom  recombination 

may  be  considered  negligible, and where  dissociation  is  observed; and (3) the 

final relaxation zone  in  which the  nonequilibrium  vibrational  and  chemical 

effects  diminish  rapidly  until  the  gas  reaches  equilibrium. 

The  transient zone (1) and  the  final  relaxation  zone (3) persist  for rela- 

tively  short  periods of time, so  that  experimental  study of these  regions is 

difficult.  Furthermore, an analytical  study of these  zones  requires  an  integra- 

tion of the  complete set of master  equations  (or of the  equivalent set of equa- 

tions  introduced  in  this  paper),  and  such  investigation is not simple. A s  a 

result the rate constants  and  molecular  kinetics a r e  least understood  in  these 

regions.  The  quasi-steady  zone,  however,  persists  for a relatively  long  period 

and has been  the  subject of considerable  experimental  study (19, 22, 56, 86, 99). 

An analytical  investigation of the  master  equations  for  the flow region  charac- 

terized as quasi-steady  requires  solving  the  system of equations  obtained by 

setting  the  derivatives  d(nv/n)/dt  equal  to  zero.  This,  compared with the 

integration of the  complete set of rate equations, is a much simpler  problem 

and thus  also a subject of considerable  study  (see,  e.g., 13,  48, 73, 85, 94). 

For  these  reasons  comparisons  between  theory  and  experiment are most 

easily made  in  the  quasi-steady  zone,  the  temperature  dependence of the 
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dissociation rate being  that  function  used as a basis  for  comparison.  Treanor 

and  Marrone  assessed  the  validity of their  nonpreferential (90, 91) and  prefer- 

ential (58) vibration-dissociation  models by making  experimental  comparisons of 

the  pre-exponential  temperature  dependence of the  effective  dissociation rate 

constant.  Similar  studies  were  also  conducted  by Keck  and Carr ier  (48) and  by 

Snider (85). Before  pursuing  the  subject  further it is worthwhile  to digress 

briefly  to  obtain  somewhat of an understanding of the  temperature  dependent 

qualities of the  dissociation rate constant. 

An intuitive  feeling  for  the  significance of the  temperature dependence of 

the  dissociation rate can  be  obtained  from  "Collision  Theory" (see , e .g., Vincenti 

and Kruger (97) , p. 221) , in which an  expression is obtained  for  the  dissociation 

rate. Basically, it is assumed  that only those  collisions are effective in pro- 

moting  dissociation  for which  the net  energy of collision  (i.e.,  the  relative  line- 

of-center  energy  plus a contribution of internal  energy  (vibrational  and/or 

rotational) ) is greater  than  the  molecular binding  energy.  This is a quasi- 

equilibrium  theory in that  the  vibrational  mode is assumed  to be equilibrated 

along with the  rotational  and  translational  modes. It is shown that  the  tempera- 

ture dependence of the  dissociation rate constant is given by T3/2Sexp(-~o/kT) 

where  the  constant eo is the  dissociation  (or  activation)  energy and the  quantity s is 

one-half the  number of square  terms  that  contribute  effectively to the  energy of col- 

lision  (see, e.g.,  (97), p. 227).  The  pre-exponential  temperature  dependence is 

given by the  factor T3l2*. For  example, if only  the  relative  transitional 

motion is effective  in  the  dissociation  process,  then two quadratic  terms are 

important  (i.e.,  the two coordinates  required to specify  the  line of centers) and 

s = 1. The  dissociation rate is then  proportional  to  Til2  exp(-Eo/kT);  the  pre- 

exponential  factor is , of course, If additional  internal  energy  modes 

must  be  considered  then s > 1. It may  occur  that  only a fraction of the  energy 

of some  modes  contribute  to  dissociation  in which case  fractional  values of s 

may  be  observed. It should  be  emphasized  that  Collision  Theory is a quasi- 

equilibrium  theory  and  hence of value  only  in  that it provides  some  insight  to 

75 



the effect of the  internal  modes on the  temperature  dependence of the  dissocia- 

tion rate constant. If, as an  upper bound, we presume  that  the  translational, 

rotational,  and  vibrational  modes are all effective  during an atom-molecule 

collision, we might  expect  on  the  basis of this  theory a rate constant with a 

temperature dependence of T-3/2 exp(-Eo/kT) (see, e.g. , (97), pp. 223  and  227). 

In the  case of argon-oxygen  collisions  Camac and  Vaughn (19) obtained 

experimentally a dissociation rate constant with a pre-exponential  factor of 

T"*-' over  the  temperature  range 3,400" 5 T 5 7,500" K (in  this  case 

s = 5/2+.2).  Wray (99), in an  independent  experiment  over a wider  temperature 

range, 5,000' 5 T 5 18,000" K, suggested a dissociation  rate without any pre- 

exponential  temperature  dependence  (inferring s = 3/2).  It will be  shown later 

that  there is considerable  scatter in  the  experimental da ta  and the  problem of 

accurately  determining a pre-exponential  temperature  dependence is difficult. 

It will be  shown,  however,  that a T"/' factor is not unreasonable  for  either 

Camac and Vaughn's  or  Wray' s data. 

The  non-preferential  dissociation  model of Treanor and Marrone (90) is 

consistent with a T-I factor (91), but fails to  predict a satisfactory induc- 

tion  time  (58),  that is, delay  time  before the  onset of molecular  dissociation 

(this will  be  discussed  further in Chapter IV). The preferential  dissociation 

model of Marrone and Treanor  (58),  although  providing  qualitatively  correct 

transient  characteristics,  yields a T-' pre-exponential  variation  (58, 90). 

The  exponent is too large on  the  basis of collision  theory  or  experiment.  It 

was partly  the  inadequacy of either of the two models to describe  quantitatively 

both  the  transient and quasi-steady  behavior  that  this  thesis  study was suggested 

by Doctor  Charles E. Treanor of the Cornel1  Aeronautical  Laboratory. 

III-B. Quasi-Steady  State  in  a  Dissociation  Experiment 

In the work that  follows  the  effects  associated with the  model  will  be 

investigated  in a manner similar to that of Treanor and  Marrone  (58, 90, 91, 

94) and of other  researchers (13, 48, 73, 85). First the  conditions  that  char- 

acterize  the  quasi-steady  zone will  be  pointed  out,  and from these  conditions 

76 



the  required  equations  will  become  evident.  Since  only  systems  that  contain a 7 
dilute  mixture of molecules are being  considered,  the  translational  temperature y.3 

may  be  assumed  constant behind the  shock. A brief  explanation will be included 

on  the  procedure  used  to  solve  the  system of equations  for  the  quasi-steady 

zone. A discussion will then  be  given of the  values of the  parameters  that will 

be  used, and finally  the  numerical  solutions will be  presented  and  discussed. 

In the  introductory  comments it was pointed  out  that  the  quasi-steady  zone 

is that  region of the flow field  where  the  ratio (nv(n)* (the  asterisk  denotes 

values  in  the  quasi-steady zone) is not a function of the  independent  variables 

of the  problem  (time or  distance  measured  from  the  shock).  Furthermore 

the  effects of molecular  recombination  may  be  neglected,  that  is, 

(E)F ” (%)R 
. The first  cons-traint  yields  the  relations 

(+)I constant 

* (:)= constant 

= constant 

where 

Y = Y A +  Y B 

(111-la) 

(111-lb) 

(111-lc) 

(111-ld) 

These  relations are satisfied by the  conditionsf 

TA* = constant (III-2a) 

TB* = constant (111-2b) 

hn the  next  chapter it also will be shown that  equations (III-2) are indeed 
valid  conditions  for  the  quasi-steady  zone. 
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= constant (111-2c) 

The  equations  required  for  the  investigation of the  quasi-steady  zone are 

readily  obtained by substituting  equations (III-2a) and (111-2b) into  equations 

(11-113c) and (II-l13d),  respectively,  and  substituting  equations  (m-2c)  into 

the  equation  obtained after subtracting (11-113a) from (11-113b). Neglecting 

the  atom  recombination  terms, we thus  obtain  the  following set  of transcen- 

dental  equations  to  be  solved  for T i ,  T;, and ( YB/YA) *: 

* 
[l+eXp (FA- ?B)*](y&yA) + V(TG,T)pYmkpeq.(T) = 0 (111-3~) 

where 

(III-3d) 

(III-3e) 
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The  above  equations are sufficiently  complex  that it is worthwhile  to alter 

their  form  before  considering a procedure  for  their  solution.  To  simplify nota- 

tion we first introduce  the  definitions 

(III-4a) 

r (III-4b) 

and  the ratio of the rates given  by  equations (II-39) 

eA2 This last equation  results after the  substitution $-i7b/kb,b-1 = exp (- y) . 
With the  above  quantities we rewrite  the  equations a s  follows: 
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where 

(III-6~) 

(III-6d) 

This  system of equations,  although still appearing  quite  complicated,  can  readily 

be  solved  numerically by the  following  procedure:  First  obtain  an  explicit  rep- 

resentation  for 7; as a  function of the  temperature T and the unknown quan- 

tities T i  and T g  . Such a function is found  by solving  the  quadratic  equation 

in 7; that  results  from  the  substitution of equation (III-6d) into  equation  (III-6c). 

The result is 

where  the  identities 

AC = k p  ( 1) (Ti,T)/kg)(Tg,T) 

(III-7a) 

(III-7b) 

(III-7~) 
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are introduced to simplify  notation. To obtain  the  above  formulation,  the 

root of the  quadratic  equation  containing  the  negative radical was discarded 

since Y$ > 0 .  The  remaining  root with the  positive  radical, of the  form 

( -B + d m ) / 2  , was modified  to  obtain  the  equivalent  form  given  by  the 

equation  above so as to avoid  the  numerical  difficulties  that occw due  to  sub- 

traction of the  quantities B and dB2+4AC when their  values are very 

nearly  equal. 

Having an explicit  representation  for 7; simplifies  the  problem of solving 

equation (III-6), since  the  problem  may now be  considered as one of solving a 

pair of coupled  transcendental  equations  for  the two unknowns T i  and T g  . 
Equation (III-Ga), indicated  symbolically by 

is one of the  equations and  equation (II1-6b), written 

f 2  [ T,   Tz ,  TS, )IR (T, TZ, TI$)] = 0 (111-8b) 

is the  other.  The  second  equation, when solved  numerically on the  assumption 

that  values of T and TZ are  given,  may  also be  written 

Tg* = TB (TZ, T) (111-Sa) 

When substituted  into  equation (ID-6a) this  yields  the  equation 

This  equation  may  then  be  solved  numerically  for T i  once T is specified. 

Although this  outlined  procedure  contains  embedded  iteration  loops  that are 

very  inefficient  from  the  computational  time  standpoint, it was found satis- 

factory  since only a limited  number of cases were run. About 8 seconds were 
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required with an IBM 7090/7094 DCS computer  system to obtain a solution  for 

one  value of the  temperature T .  Both equations (III-9b) and  (m-9a)  were 

solved by means of a nested  pair of iterations, which were based on the  con- 

ventional Newton-Raphson  method. It should also  be  pointed  out  that  the  order 

in which the  equations a r e  solved (as implied  above) is important  since  the 

procedure of solving  equation  (ID-sa),  assuming  values  for  T and Tg* , may 

not yield a solution  unless  the  iteration  procedure is started with relatively 

accurate bounds  and initial  guesses  for T l  and Ti;. 

It is worthwhile to discuss  equations (IU-6) briefly. One observes  that 

these  equations are independent of density,  and  thus  their  solutions  will  also 

be independent of density.  The  equations depend parametrically on  the  func- 

tions  A(T), TA1/q,, -rA1/TB , and TA,/-rD. Since T is inversely  proportional 

to pressure,  the  latter  three  ratios are independent of pressure and are  func- 

tions only of the  temperature  T . Also  embedded  in  equations (ID-6) are the 

separation  constants a and b and the  constant  parameter  TU. A s  a result 

of the  procedure  used  to  evaluate  the  transition  probabilities  (see Appendix B), 

the  temperature-dependent  quantities  listed  above,  except T~ , can  be  related 

to X(T) (see Appendix B) as follows: 

(III-loa) 

(111-lob) 

and equation (11-73) relates  the  dependence of A(T)  on X(T) . Also given  in 

Appendix B are two suggested  equations  for  evaluating X(T) , that is, XR(T) 

and XF(T) . Solutions  that depend on each  function  were  obtained  in  order 

to assess the  sensitivity of the  resulting  solutions  to  this  parameter. 
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Solutions will also  be  exhibited  for  the  hypothetical  case 

cur if the  transition  probabilities were strictly  those  for a harmonic  oscillator. 
A 

The  characteristic  vibrational  relaxation  time TA associated  with  the 
I 

lower  vibrational  states  (for  discussion see Appendix B) is taken  to  be  that 

quantity  measured  experimentally by Camac  (20);  that is, 

where 

A 

C1 = NoC1 

= 7.22 x 1016cc/mole-sec-(oK)1/6 (111-llb) 

el = 1.20 x 10-7cc/particle-sec-(oK)1~6 (HI-llc) 

C, = 1.04 x l o 7  *30% OK (111-lld) 

To assess the  sensitivity of the  solutions to TA two values of  C, are used: 
1 ’  

ci = 1.04 X l o 7  OK 

ci = 1.40 X l o 7  OK 

(ID-12a) 

(111-12b) 

Here Ci is the  value  suggested by Camac,  and  Ci is slightly  larger  than  the 

value  associated with the  upper e r r o r  bound of 30 percent  reported by Camac 

(see eq.  (11-lld)). 

The  equilibrium  dissociation rate kFeq contained  in  the  characteristic  dis- 

sociation  time TD (see eq. (111-4b)) is evaluated  in two ways for  the  results  that 

will be  shown. First ,  it is simply  presumed  that we have a Ti/’ pre-exponential 

factor (recall discussion of Collision  Theory  given earlier in this chapter). It 

then  turns  out  that  the  vibrational  coupling  factor V* obtained from  the  quasi- 

steady  solution  effectively  adds an additional  temperature  dependence. 
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Second,  the  equilibrium  dissociation rate kFeq is considered  in  the  same  man- 

ner as in  Marrone  and  Treanor  (58),  where it is assumed  that the coupling factor 

contains the entire  pre-exponential  temperature  behavior.  For  the  first  case we 

have 

k e q .  (''1 = 1.42 x l o i3  fi exp (- %/T) 

and for  the  second  case 

[kFeq. MT 
= 9.00 x loi4 exp 

(111-13a) 

(111-13b) 

In both of the  above  equations  the  constant  coefficients were evaluated so as to 

agree with Camac and Vaughn's  experimentally  determined  rates  at 

T = 4,000' K, as was done by Marrone and Treanor (58). 

The parameters a and  b are chosen  somewhat  arbitrarily.  The  value of 

a (discussed in Appendix B) is such  that  the  deviation of the  approximate "rate- 

of-quantum-transfer"  relation  is not greater  than  about  a  factor of 2 (when 

compared with similar  relations obtained from  Morse  oscillator  quantities)  at 

the  vibrational  energy  level  corresponding to the  energy E a .  A value of a = 9 

approximately satisfies this  criterion. The  choice of the  value  for  b will  ulti- 

mately depend on  how accurately  the  solutions  can be made to agree with 

experimental  data.  The  choices  b = 16,  24, and 30 result in the  fractional 

energies Eb/ED = 0.544, 0.786, and 0.968, respectively.  The  latter  choice 

yields  unsatisfactory  pre-exponential  behavior  for  the  effective  dissociation 

rate, as will  be  shown, and is only briefly  considered.  It is to  be  emphasized 

that  these  values of b are  arbitrary,  but  appear  reasonable on  the basis of 

the results given in  references  48,  84, 94. 

A series of plots a r e  given  in  figures 111-1 through 111-12 showing  the  solu- 

tions  obtained  from  equations (HI-6). Separate  curves  are given  in  each  plot, 

each  associated with a different  value  for  the  separation  constant  b,  for  each 

of the  quantities T i / T ,  Ti;/T, V", and kpeff.  (T)/exp  kFeff.  (4,000). 
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For the  readerls convenience  Table III-1 lists  the  values and identifies  the  par- A '  

ticular  temperature-dependent  quantities  used  for  the  solutions.  For  example, '1 :"-= 

for figure 111-1 the  parameters have  the  values  TU = 00 (actually,  TU = loz3), 

(#j&k 
..+~ ~ ~- 

X = X R y  kFeq. = 9 X loi4 exp - - , Cz = 1.4 x I O 7  , and a = 9 .  Associated  with ( (2) 
these  values,  figure III-la shows six curves, of which three  give  TA/T  for 

b = 16, 24, and 30, while  the  other  three  similarly  give Ti /T .   F igure  ID-lb 

contains  three  curves  for  the  coupling  factor V", with each  curve  again  for a 

different  value of the  separation  constant  b . Figure III-lc  shows  the  pre- 

exponential  temperature  dependence of the  dissociation rate constant.  The 

circles and squares are experimentally  measured  values,  the  circles  from 

Wray' s data (99) and the squares  from  Camac  and  Vaughn's  data  (19).  The 

solid-line  curve,  labeled C & V, is the  dissociation  rate  computed  from  the 

formula  given by Camac and Vaughn (19) (representing  a  least  squares  fit of 

his  data), but  appropriately  normalized.  Since  Wray (99) gave  a  formula with- 

out  any pre-exponential  temperature  dependence , the  horizontal  line  associated 

with 10' would be  appropriate  for  his  formula.  The  dotted-line  curves  are 

guides  from which  one may  estimate  the  functional  behavior of the various 

curves  regarding  temperature  dependence,  The  lower  dotted  line  represents 

a T-' pre-exponential  temperature  dependence, and  the  upper  dotted curve 

corresponds to T-'/'. The two solid  lines  labeled  b = 16 and b = 24 repre- 

sent  the  pre-exponential  temperature  dependence  as  obtained  from the present 

quasi-steady  solutions. 

An important  point  evident  from  figure 111-lc is that  the  experimental 

values  have  less  than  the T-2 dependence  obtained by Marrone and Treanor (58). 

Although Camac  and Vaughn fit their  data with a function  that  varies as T-I, i t  

would appear  from  Wray' s higher  temperature  data  that  a  variation of  T-'/' 

would be  more  reasonable. It is to be  emphasized  that a different  normaliza- 

tion would cause a shift of the  dotted T-1/2 curve and that a different  place- 

ment of this  curve  can  be  made.  Because of the  scatter  in  the  experimental 

data  the  most  appropriate  factor is still  uncertain.  The  published  data, how- 

ever, do not show the  same  degree of scatter because  the  exponential 
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Table III-1 

Parameters  associated with the  quasi-steady  solutions , 
figures III-1 through 111-12. 

Figure no. TU X kFeq. c2 b a 

111-1 

111-2 co 

m 

m-3  @D/3 

Ill -4 w 3  

III-5 eD/lo 

111-7 @,/lo 

Ill-9 e ~ / 5 0  
111-10 @,/loo 

111-12 e,/10 

111-6 +/lo 

111-8 eD/2 0 

111- 11 - 

X :  R see eq. (B14c) 
F see eq. (B23b) 

kFeq,: WR see eq.  (m-13a) 
MT see  eq. (ID-13b) 

C2: 1 see eq.  (In-12a) 
2 see eq. (III-12b) 

R 

R 

F 

F 

F 

F 

F 

F 

F 

F 

F 

X(T) = 1 

MT 

WR 

MT 

WR 

MT 

WR 

MT 

MT 

MT 

MT 

MT 

MT 

16,24,30 

16,24,30 

16,24,30 

16,24,30 

16,24,30 

16,24,30 

16,24,30 

16,24,30 

16,24,30 

16,24,30 

16,24 

16,24,30 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

factor  exp (- eD/kT), which actually  dominates  the  measurements, is included. 

The pre-exponential  factor  compared with the  exponential  factor  represents a 

relatively  small  variation. 

The  problem of determining  the  appropriate  values  for  the  parameters  em- 

bedded in  the  equations is difficult  because of the relative  uncertainty of the ex- 

perimental  data,  the  limited  amount of such  data, and the  rather  large  number of 

parameters  tobe  evaluated.  The  essential features exhibited by the  solutions are 
1. The relative  values of TL/T  and T i / T ,  
2. The  temperature  dependence of V*, 
3. A comparison of the  pre-exponential  temperature  dependence of the 

effective  dissociation rate constant. 
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It will turn  out  that  these features together with certain facts obtained by other 

investigators will be  sufficient  for  estimating  appropriate  values of the  embed- 

ded parameters. 
" 

It is known that one effect of dissociation is to perturb  the population in  the 

upper states to values less than  those  appropriate  for a Boltzmann  population 

distribution (48,  84,  94). We would therefore  expect  that T$T < TL/T,  espe- 

cially at the  higher  temperatures.  Furthermore, we seek  values  for  the 

parameters  that will yield a pre-exponential  temperature  dependence  that 

varies roughly as T-'12. Searching  through  the  figures we note  that  the  com- 

bination of parameters  associated with figures 111-1 may  be  discarded  since,  in 

this  case,  T$/T > T i / T  (see fig. 111-la) and,  in  addition,  the  pre-exponential 

temperature  factor  varies too weakly with temperature (see fig. 111-lc). For 

the case in  figure 111-2 kFeq. (T)MT is replaced by kFeq. (T)m and  the 

results show  that  the  perturbing  effect of dissociation is now accounted  for 

(see  fig. 111-2a). The pre-exponential  temperature  dependence,  however,  does 

not agree with the  experimental result (see fig. 111-2c). One observes  that  the 

Ti/' factor  contained  in  kpeq.  (T)m  produces  effectively a positive  pre- 

exponential  temperature  exponent  rather  than a negative  exponent as  is implied 

by the  experimental  data.  Reducing  TU  (see,  e.g.,  figs. 111-2, 111-4, III-6) 

reduces  the  positive  exponent, but not  to  such  an  extent a s  to  effect  satisfactory 

agreement with the  experimental  data.  However, we also  observe  that  reduc- 

ing  TU  reduces  TG/T  relative to Tz /T  and increases  the  pre-exponential 

variation  with  temperature (cf. figs. 111-1 through III-6). 

A s  explained earlier , the  parameter  TU is a measure of  how rapidly  the 

dissociation  probability  drops off for  the  lower  vibrational  levels  (see 

Appendix C for  discussion).  The  larger  values of TU  correspond to a rela- 

tively  equal  probability of dissociation  from all the  B-state  levels and the 

smaller  values to a relatively greater probability of dissociation  from  the 

uppermost  levels.  The  quasi-steady  solutions  seemingly  imply  that a large 

pre-exponential  temperature  dependence  requires  small  values of TU. This 

is consistent with Treanor and Marrone's result (91,  93) in that  TU = 
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(nonpreferential  dissociation  model)  resulted  in a T-i pre-exponential  tempera- 

ture  dependence  while TU = e,/6 (58) (preferential  dissociation  model) 

resulted  in  roughly a T-' temperature  dependence.  Aside  from  including  the 

vibrational  temperatures TA and TB and the effect of anharmonicity,  the 

model  differs  from  Marrone  and  Treanorjs  preferential  dissociation  model  (58) 

in  that  here only the  vibrationally  excited  molecules,  characterized as being  in 

the  B-states,  are allowed to dissociate.  The  effect of decreasing  b would 

result (although  such  calculations a re  not shown) in  a  pre-exponential  tempera- 

ture  factor as large as theirs. 

The discussion  thus far has  centered on figures 111-1 through 111-6, which 

show  the  solutions  associated with the  value of C, given by equation (111-12b) 

(see also  table 111-1), that  is, which correspond to a relatively  large  character- 

istic  vibrational  relaxation  time TA Decreasing  this  parameter by use of the 

expression  for C2 suggested by Camac and Vaughn (i.e.,  using  eq. (111-l2a)) 

increases  the  values of TB/T relative  to  TA/T and also  decreases  the  pre- 

exponential  temperature  factor. It thus  has  an effect opposite  to  that  desired 

on  the basis of the  experimental  data.  This  may  be  countered by further  reduc- 

tion  in  the  value of TU and the  appropriate  effects  are  illustrated  in  fig- 

ures  III-8,III-9, and 111-10. However,  comparing figures 111-9 and 111-10,  we 

observe  that  there  appears to be a small  value of TU below  which smaller 

values  have  little  effect on  the  pre-exponential  temperature  dependence.  That 

this is true is illustrated  in  figures 111-11, wherein  the  coupling  factor V* is 

plotted as a  function of TU  for  T = 10,000" and  20,000"  K,and for  b = 16 and 24. 

Comparing  figures 111-lla with Ill-llb we observe  that a change  in  the  value of 

C2 of only about 36 percent (a factor of between  2 and 3 in  the  characteristic 

vibrational  relaxation  time T A ~  over  the  range of temperatures of interest) 

has a rather  large  effect on  the  coupling factor  or the pre-exponential  tempera- 

ture dependence.  These  figures  also show that any incremental  change  in  TU , 
when this  parameter is greater  than l o 5  or   less  than  2 x lo3,  has little effect on 

the  coupling  factor V* (also see  discussion  in Appendix  C). In  the  former 

limiting  case we have  nonpreferential  dissociation  from any B-state  level and 

1. 
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in  the latter case highly preferential  dissociation - in  essence,  dissociation only 7 
from  the  very  uppermost  level. We note further  that  the latter limiting  case .e:> 
yields  the  smallest  values  for  the  vibrational coupling  factor V* for any  given 

temperature  T and  hence  the greatest pre-exponential  temperature  dependence. 

It then  follows  that  the  largest  pre-exponential  temperature  variation 

obtainable with the  assigned  values of b is that shown in  either  figure lII-9 

or  111-10. A greater  pre-exponential  temperature  dependence will  require 

smaller  values of b . The results  shown,  however, are within the  experimental 

data  scatter;  hence, 16 is the  largest  value of b  that will  yield  favorable  agree- 

ment with experiment. 

No comparisons are shown from which  one can  estimate  the  effect of using 

the two specified  values  for X (T)  (see  eqs. (B28a)  and  (B28b)). It  turns out 

that  the  solutions are little  affected by whether XF (T)  or XR (T) is used  for 

X(T) . The greatest  effect is a  difference  in  the  values of T i / T  and Tg /T ,  

amounting to about 2 percent, and occurs  at  the  lower  temperatures  where  the 

differences  between  the  values of X+ and XR are  greatest  (see Appendix  B). 

At the  higher  temperatures  the  differences  were  observed  to  be  less  than 

1/2 percent. One additional  effect of X is worth  pointing  out.  The reader 

will observe  that TG/T crosses   Ti /T  for  a few of the solutions  (see,  e.g., 

fig. 111-7a). This  crossover  occurs  because  the  approximations  introduced  for 

XR(T) or  XF (T)  in Appendix B are  inaccurate  at  the  lower  temperatures, and 

hence it is probable  that Tg* is also  in  error at those  temperatures.  It is to 

be  expected  that  an  additional  segment  (that  is,  an  additional  separation com- 

parable to the  a-level  separation) would eliminate  the  crossover  and  improve 

the  value  computed for TB . It will be shown in the  next  chapter  that  such  an 

additional  segment may be advisable  for  other  reasons  also. On the other hand, 

the  effect of such  improvements is not expected to be large  since  the  relative 

molecular  population of the states that a r e  affected is small  (see  discussion  in 

Appendix B and also the  discussion of the  component  derivative terms  in the  next 

chapter).  This is further  attested by the  fact  that  the  use of either XR o r  XF 

has only a small  effect on  the  solutions. This is not  to say  that  the effects of 

* 
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anharmonicity  may  be  ignored. One observes  by  comparing figures III-7 and 

ID-12 that  differences  do  occur  depending on whether one includes or  ignores 

the  effect of anharmonicity on the  transition  rate,  although  the  differences  for 

the case of a normal-shock wave may  be  sufficiently  small to be  unobservable 

experimentally. It will  be shown in the  next  chapter  that  for  nozzle  flow,  the 

effects of including  anharmonicity  may be large and  should not be ignored. 

The investigation  in  this  chapter  has  provided  insight  on  the  effect of the 

parameters and the  effect of incremental  changes  in  the  values of the  param- 

eters on the  quasi-steady  solution.  It  should  be  apparent  that  the  values of b 

corresponding to energies Eb that  are  greatly above  the  midpoint of the 

vibrational-energy  potential well do not  provide a sufficiently  large  pre- 

exponential temperature  variation  as  compared to that found experimentally. 

For  each b below the  midpoint  value,  the  parameter TU can  be  adjusted to 

provide  the  proper  pre-exponential  temperature  variation,  Consequently, a 

unique choice of values  for  the  embedded  parameters  cannot  be found simply 

on  the  basis of the  comparisons with the  quasi-steady  solutions.  Additional 

comparisons  must  be  made  and  this,  in  part, is the  purpose of the  investiga- 

tions  discussed  in  the  next  chapter. 

Solutions will  be  obtained  that show the  details of the  relaxation to equilib- 

rium behind a normal  shock wave.  The effect of changes  in C, , b , and TU on 

the  relaxation  behavior will  be  investigated  further,  particularly,  the  effect of 

these  variables on the induction  time.  Finally,  an  example will be given for 

nozzle flow together  with a discussion of the  distinguishing  features  associated 

with such flow. 
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CHAPTER IV 

COMPLETE SOLUTIONS OF THE MODEL EQUATIONS 

lV-A. Introductory  Comments 

The  preceding  chapter  was  based on a study of the  effects  produced by 

changing  the  values of various  parameters  contained  within  the  model  equations. 

The  investigation  was  greatly  facilitated by the  availability of easily obtained 

special  solutions.  Just as important,  these  special  solutions  had a particular 

significance  in  that  they  represent  the  conditions  relevant  to a comparison  with 

many of the  experimental rate observations.  The  solutions are particular  to 

the  quasi-steady  zone  behind a normal  shock wave. The  purpose of the  investi- 

gation  was  primarily  directed  toward  an  assignment of values  for  the  param- 

eters. It is not possible,  however,  to  evaluate  the  parameters  in  the  model 

equations with certainty  purely on the  basis of comparisons with the  quasi- 

steady  solutions. As was  observed, one may  obtain  equivalent  results  using 

different  combinations of values  for  the  parameters. In addition,  because of 

the  scatter in  the  experimental  data,  there is a broad  range of values  that one 

may  assign  to  any one of the  parameters  and  still  effect  satisfactory  results. 

Additional comparisons are therefore  advisable,  and  this is one purpose of the 

discussion  in  this  chapter. In particular, we take  advantage of the  fact  that 

measurements  have  been  made on the  delay  time  (incubation  or  induction  time) 

that  occurs  before  the  onset of dissociation  (99).  These  experimental  measure- 

ments  provide  another  and  completely  different  basis  for  comparison. In 

addition,  several  measurements  have  been  made of the  characteristic  vibrational 

relaxation  times  associated with expanding  (nozzle)  flows  (98).  However, 

because  there is a considerable  variation of the  reported  values of this  quantity 

(44, 45, 61, 78, 79, 80, 98) (in  some  cases  the  values  differ by several  orders 

of magnitude),  quantitative  comparisons will not be  made.  It  will  be shown 

that  the  model  yields  qualitative  agreement  with  these  studies  and,  for  the 

more  recent  references  (98),  the  agreement  appears  quite good. 
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The  essential  difference  between  this  and  the  preceding  chapter is that 

here  the  discussion will involve  the  simultaneous  solution of the  model rate 

and  fluid-flow  equations. A rather  complicated  numerical  integration  procedure 

was  required  to  obtain  these  solutions  and  the  development of this  procedure 

was a major  task. A discussion of the  numerical  aspects of the  problem is 

given in Appendix E , and  the  explicit  form of the  equations  that are solved is 

given  in Appendix F. 

After  the  final  comparisons are made, a single set of values  can  be  defined 

for  the  embedded  parameters  that  effect  reasonable  agreement of the  model 

with  available  experimental  data.  The  model,  in  this  respect, is complete. 

A s  a result of the  formalism  reported  in  Chapter I1 and  used  to  derive  the 

equations,  the  various  terms  constituting  the  rate  equations  have  physical  sig- 

nificance, and their  investigation  therefore is worthwhile.  Such  an  investigation 

yields  insight as to why differences  should  be  expected when comparing, f o r  

example,  characteristic  vibrational  relaxation  times  obtained  from  normal- 

shock wave  and nozzle  data. 

In the  section  that  follows,  the  discussion will first  concern  the  shock 

structure  that  results  from  the  complete  solution of the  model  equations. 

Initially no emphasis  will  be  made on the  effects  that  result  from any particular 

choice of parameter  values.  Qualitative  features of the  shock  structure  appear 

to  be  due  to  the  structure of the  equations  regardless of specific  values of the 

parameters.  The  relationships of the  various  terms  to  these  features will first 

be  discussed  to  promote  an  understanding of the  vibration-dissociation  coupling 

process.  After  the  discussion on the  shock  structure,  attention  will  be  given  to 

the  differences  caused by changing the  values  for  the  parameters.  The  effects 

of the  parameters on the induction time  will  also  be  considered.  Later  sections 

provide a description of the  events  occurring  in  nozzle flow. An explanation is 

also given of the  significant  differences  observed  between  shock-wave  relaxa- 

tion  processes and the  relaxation  processes  associated with expanding  flows. 
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TV-B. Normal-Shock  Wave  Solutions 
~~ ~ 

The  results of this  section are obtained by setting  the  derivatives dA/dx in 

equations (F16) equal  to  zero  and  then  integrating  the  resulting  equations  ac- 

cording  to  the  numerical  integration  procedure  described  in Appendix E. (The 

explicit  method is used  for about the  first 125 computational  points, and the 

implicit  method is used  thereafter.)  The  conditions  downstream of the  shock, 

which provide  the  initial  values  for  the  integration  procedure, are obtained by 

an  iteration  procedure  similar to that  given by Vincenti  and  Kruger (p. 179 in 

97). Here  the  nonequilibrium  variables y , y , y , TA , and T are assumed  to 

be  frozen  across  the  viscous  shock.  The  gas  mixture  used  for  these  solutions 

was 4 percent  molecular oxygen  and 96 percent  argon.  The  effects of consider- 

ing  molecules  other  than  argon as a colliding  partner  may  therefore  be  taken as 

negligible  (that is, the  fractions  y / y  and -yo/ym in  eqs. (II-113) may  be con- 

sidered  small and only the  species  argon  considered  for  the  summation index r). 

A B a  B 

0 2 m  

A sampling of the  results is given  in  figures IV-1 through IV-7. For  the 

reader's  convenience,  table Tv-1 lists the  values  for  the  temperature-dependent 

parameters in the  cases  plotted.  The  cases  illustrate  the  effects  occurring  for 

several  values of the  parameters and for  shock  waves  having  values  for  the 

downstream  temperature T2 (kinetic  temperature  directly  behind  the  shock 

wave) of 6,677"  and  16,570' K. One sample  case is plotted  for  the  lower  tem- 

perature  purely  to  illustrate  the  differences  that  occur  for  weaker  shocks.  The 

abscissa  scale  for  these  figures  corresponds to the  time after passage of the 

shock  (laboratory  time)  appropriately  adjusted? so as to  remove  the  dependence 

t The  abscissa  scale is computed  according  to  the  formula 

where n2 = pz/kT2,  k is Boltzmann's  constant,  and  the  subscript 2 denotes 
values  immediately  downstream of the  shock  wave  (see, e.g., p. 56 in 10 for 
discussion of tlab). This  adjustment is sufficiently  accurate  since  the  density 
behind  the  shock is nearly  constant. 
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Table Iv-1 

Parameters  Associated With Complete  Solutions,  Figures Iv-1 Through IV-7 

Figure no. T2  TU x "Feq. c , b a  Quasi-steady 
Fig. no. 

X :  F see  eq. (B23b) 
lrFeq.: MT see eq. (111-13b) 
C,: (1) see eq. (111-12a) 

(2) see eq. (111-12b) 
" 

of this  scale on density. In this  manner one can  compare  the  effects  occurring 

for  different shock-wave  solutions regardless of the  density  behind  the  shock. 

This  procedure  parallels  that  used by Wray (99) and  in  effect  relates  the  effect 

of relaxation  to a common  density  behind  the  shock of 1.28 x 10'' particles/cc. 

Before  beginning  the  discussion of the  solutions, a few comments of a 

general  nature  should  be  made  concerning  these  figures.  First,  the  reader is 

cautioned  to  observe  that  the  time  scales  may  be  different  for  the  different  plots. 

The figures were  generated  automatically  with a General  Dynamics S-C 4020 

Electronic  Plotter  (for a description of the  system  used,  see 50). The  scaling 

parameters  were  also obtained  automatically  and  since  the  integrations  were 

not always  terminated at the  same  relative  reference  time,  some  plots encom- 

pass  longer  times  after  passage of the  shock wave than  others  (e.g.,  compare 

figs. Iv-1 and Iv-2). The  figures show the  complete  shock  profiles;  for  the 

longer  times, once  equilibrium is reached, no further  effects  are  observed and 

the  values of the  dependent  variables  remain  constant.  The  plots show an 
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erratic  behavior  in  the first transient zone  that  in some cases is of greater 

magnitude  than for  others (e.g., compare  figs. IV-1 and IV-6). This  behavior 

depends  purely  on  the  numerical  integration  procedure and represents  the 

effects of numerical  instability. It has no effect  on  the  final  values of the  inte- 

grated  variables. One has  full  control of the  amplitude of the  instability, and 

the  effects  are shown  only to lend  additional  weight  to  the  discussion  on  the 

numerical  integration  procedure  given  in Appendix E. For the present  dis- 

cussion  one  may  ignore  the  instability  phenomenon,  since  they do not affect  the 

final  results and since  they are of  no consequence  to a physical  description of 

the  results.  The  correct  values of the  variables  are  made  evident by a smooth 

curve  fitted  through  the  lower  locus of computed  points. 

Given in  each  figure  are  plots of the  variables T,  TA,  TB,YAyYB,'Yay  and the 

ratio ~'/YA (this  latter  quantity  becomes  constant  in  the  quasi-steady  zone). In 

figures IV-l,3,5,6 the  vibrational  coupling  factors are  also plotted and in  fig- 

ures IV-1 and IV-7 are shown,  in  addition,  the  derivatives and their component 

terms. 

(IV-B-1). Shock-Wave Structure 

We first consider  in  detail  the  shock  structure  resulting  from a solution of 

the  model  equations,  ignoring  any  consideration of effects  peculiar  to a particu- 

lar choice  for  the  embedded  parameters.  Figures IV-1, for  example,  give  a 

complete  picture of the  relaxation  processes  (these  processes are associated 

with a single set of parameters having  the  values  listed  along  the  first  row  in 

Table IV-1). The  three  characteristic  zones  mentioned  previously  are  labeled 

in  this  figure by the  numerals 1, 2, and 3 corresponding,  respectively,  to  the 

transient,  the  quasi-steady,  and  the  final  relaxation  zones. In the first region 

the  vibrational  temperatures, TA and TB,  and  the  upper-state  and  atom con- 

centrations, yB and y, rapidly  increase  in  value,  attaining  their  quasi-steady 

values  in  about a quarter of a microsecond;  that is, in  the  transient  region,  the 

upper  vibrational states are rapidly  populated,  thermally  Ifheated"  and,  at  the 

same  time,  partially  dissociated as evidenced  by  the  increasing  atom  concen- 

tration  (recall  that only the B molecules are allowed  to  dissociate), In the 
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(a) Tempera tures  

Figure IV-1. Variables  obtained  from shock solution  versus  adjusted 
laboratory  t ime  (associated  parameters  are listed  along 
first row of table N-1) 
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(b) Concentrations 

Figure IV-1 Continued 
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Figure IV-1 Continued 

121 



I 

I .  

0. 

0. 
L 

t 
0 

0. + 

0, 
F 
Q. 
3 
0 
0 

-= 0. 

c 
0 

0. 
.- 
t 

E a 0. > 

>” 0. 

0. 

0. 

n v 
“I I 

IO d o  10’ IO8 IO lo-6 lo5 -7 

Adjusted shock passage  time,  sec 

(d)  Vibrational  coupling  factor 

Figure IV-1  Continued 

122 



transient  zone,  the  lower-state  molecular  concentration  remains  relatively 

constant,  and  the  vibrational  coupling  factor  rapidly  increases  from its initially 

small  value. 

The  quasi-steady  zone is indicated  in  these figures, and the  values  obtained 

from  the  quasi-steady  solutions of the  preceding  chapter are given! These 

values a r e  labeled by the  variables  superscripted  with  an  asterisk.  The  quantity 

V* compares  accurately with the  quasi-steady  value  obtained  here, as can  be 

seen  in  figure TV-Id. There is a slight  discrepancy of about 2 percent,  however, 

between  the  results  for  both T i  and T i  as computed  in  the  previous  chapter 

and as found here.  This  difference is attributed  to  the  fact  that  the  temperature 

T is not exactly  constant as was  assumed  in  the  previous  chapter,  but  changes 

about 10 percent as a result of the  effects of dissociation  (note  that  the  tempera- 

ture  T  varies only in  the  quasi-steady  zone).  The  dissociation  energy has  a 

relatively  large  effect on the  kinetic  temperature  even though the  molecular 

concentration is small  (initially 4 percent of the  total  mixture).  The  density and 

velocity,  however, a r e  not so greatly affected  by  dissociation.  These  quantities 

are  nearly  constant  and are therefore not plotted.  (They  varied  about 4 percent 

as a result of dissociation.) One notes  that  in  the  quasi-steady  zone  the  ratio 

y / yA and  the  temperatures TA and Tg are  nearly  constant.  The  basic 

quasi-steady  assumptions a r e  thus  in  fact  valid  in  these  cases.  It is also 

interesting  that,  although  the  concentrations  yA  and yB  a r e  varying,  their 

ratio is indeed  constant. 

B 

An additional  feature  characterizing  the  quasi-steady zone is that  in  this 

zone the  effects of dissociation  become  appreciable, as is evidenced by the 

rapid  decrease in  the  molecular  concentration  and by the  effect on T.  The 

entire  molecular  concentration is approximately  contained  in  the  states 

denoted "Aff as a result of the  relatively  large  difference  in  the  concentration 

?The  temperatures T2 and  the  applicable  quasi-steady  solutions are listed  in 
Table IV-1. With this information  the  respective  quasi-steady  values  for  the 
variables are readily  obtained  from  the  figures of the  preceding  chapter. 
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variables Y A  and Y, . This is exemplified  further  in  figure  IV-lc,  where 

the  lower-state  concentration yA is plotted  along  with  the  total  molecular con- 

centration  y = yA + y, . It is also  worthwhile  to  point out that  the  tempera- 

ture  TB  initially  increases in  the  transient  region  at a more  rapid  rate  than 

TA , but near  the end of this  region TA overtakes  TB . In the  quasi-steady 

region  the  effect of dissociation is to  cause T, to  be  lower  than  TA . 
A s  regards  the  passage  time of the  latter two zones,  for  the  case  exempli- 

fied  by figure IV-1 the  quasi-steady  zone  persists about 8 ,usee or  about 30 

times  longer  than  the  transient  region.  The  final  relaxation  region  persists 

about 7 psec,  during which time  final  relaxation  to  equilibrium  occurs.  From 

these  results one can  appreciate why many of the  experimental  observations 

a re  conducted  during  the  rather  long-time  passage of zone 2. Although the  final 

relaxation zone also  requires a relatively  long  passage  time,  experimental 

measurements in  this  region are often  hampered by other  effects  such as, for 

example,  the  arrival of a driver gas (shock-tube  studies,  see, e.g., 10,  70, 86). 

We have so  far been  discussing  the  structure of a shock wave according to 

the  behavior of the  basic dependent variables.  This  discussion  was  based on a 

single  ''complete''  solution. In figures  IV-le  through  IV-li are plotted  the  com- 

plete  derivatives  and  their  separate  terms  associated with this solution.  To 

facilitate a description of these  figures  the  following  notation is introduced  for 

the  terms  that  appear  in  equations (11-113): 

(IV-2a) 

(IV-2b) 

(IV-3a) 

Q2 ya = -2P2Ym Y a  kFes!T) lV 
KB(T) 
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(IV-4a) 

L “ 

(IV-4b) 

(SV-4d) 

(IV-5a) 

(IV-5b) 

(IV-5~) 

(IV-6a) 

(IV-Gb) 

(SV-Gc) 

(IV-6d) 

(SV-6e) 



, I -- 

This  notation - is consistent with  that  used  by  Lomax and Bailey (53) where,  for 

example, QyA denotes  the  production of lower-state  molecules, ('YA = anyA), 

per unit  distance  along a stream  line and has c.g.s. units of  cm". The  reader 

should not confuse  the  superscripted  Q-quantities with the earlier Q-quantities 

without superscripts,  the  notation  used  for  the  partition  functions (cf., e.g., 

eqs. (IV-5)). The  Q-quantities  with  superscripts only represent  the  sum of 

the  Q-quantities  having  like  superscripts and integer  subscripts (note eq. (IV-7) ). 

Except  for  the  factor  l/v and also  the  factor p in  equation (IV-Gb), the  reader 

can identify the  above  quantities as being the  individual  terms in equations 

(IC-113) of Chapter II. The  symbols not defined here have  the  same  meaning as 

in  Chapter 11. The  reason  for  introducing  the  factor p will be  explained 

shortly. 

In figure  IV-le are plotted the  separate  terms of the  derivative  for 7' as 

well as the  derivative itself. The  values  for  these  terms were obtained at the 

same  time  that  the  variables shown in figures IV-la through IV-Id were found. 

The  sign  associated  with  the  separate  terms, as well as their  sum, is indicated 

parenthetically  after  the  labeling  symbol  (the  logarithm of the  absolute  values 

a r e  plotted,  hence  the  sign  must  be  indicated  separately).  The  three  zones  are 

also  labeled  here  for  reference.  In  the  transient  region we see  that  the  deriv- 

ative and the  component  terms  have  very  small  values  (resulting  in no effect 

on Y A )  and that  the  loss  term  (negative  term) QYA is dominant.  This  rela- 

tive  behavior  continues  throughout  the  transient  zone. Near the end of this 

region we observe  that, although the  gain - term  (positive  term)  overtakes  the 

loss  term  in  value,  their  difference QyA, or  algebraic  sum,  approaches a 

maximum  value  that  remains  relatively  constant  throughout  the  quasi-steady 

region. At the end of this  region,  or  at  the beginning of the  final  relaxation 

zone,  the  gain  term  approaches  even  closer  the  value of the  loss  term,  as is 

exemplified by the  decrease  in  the  value of the  derivative QyA. Finally,  at 

- 

- 
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(e) Derivative,  Q'A, and  component  terms, QyA i 

Figure IV-1 Continued 
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equilibrium  the  derivative is constant,  but with a value  sufficiently  small so  as 

to  have  only a negligible effect on the  concentration  variable YA. t 
- 

The  derivative QYA thus  behaves  in  the  manner  expected.  Since  the  deriv- 

ative  contains only single  gain  and  loss  terms  such  behavior could  have  been 

inferred  from  an  examination of the  behavior of the  variable YA (fig.  IV-lc). 

Likewise  an  equivalent  statement  may  be  made  about  the  behavior of ya (see 

figs.  Tv-lb  and  Tv-lf),  where  the  processes are different only to  the  extent  that 

the  signs of the  dominant  terms are different.  There is, however,  an  additional 

complexity  associated  with  the  derivatives Q B, Q A, and QTB that  requires 

comment. 

7 T 

- - 
The  separate  terms of  Q'B a r e  plotted  in  figure  Tv-lg.  The  tern1  QTB, 

associated with the  recombination effects, is at first negligibly small  (initially 

nearly 40 orders of magnitude  smaller  than  the  next  larger  term)  and  remains 

so throughout  both  the  transient  and  quasi-steady  zones.  (This  same  effect  can 

be noted for all the  terms QTa, Q 4 B,  and  QTB  that  represent  the effects of 

atom  recombination.)  The  dominant term  in  the  transient  region is the  gain 

term QTB that  represents  the gain  in yB due to  losses  from 

- - 
Y 

- 

- 
+The  derivative Q'A (as well as the  other  derivatives)  should  become  zero 
when the  final  relaxation  to  equilibrium  has  occurred.  The  fact  that  the  deriva- 
tive  has a non-zero  small  value,  that is, small  relative  to  the  values of its sep- 
arate te rms  (four orders of magmitude less), indicates  that  the  numerical 
integration is not exactly  precise. In  Appendix E it is pointed out that  these 
solutions are only accurate to  about  0.01  percent.  This is further  exemplified 
here  by  the fact that at equilibrium  the  difference  between  the  separate  terms 
is of this  order. - - 

$It is interesting  to  observe that QTB is proportional  to Q;/A (see eq. 
(IV-4a))  and  that  in  the  transient  zone  each Lerm is the  dominant term of the 
derivative  in which it appears.  The  term QTB ,-however,  causes  a  rapid 
variation  in  the  variable yB while  the te rm QyA has no effect on yA until 
TA is sufficiently  large. 
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(f) Derivative, QYa, and  component  terms, QP - 

Figure IV-1 Continued 
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(g) Derivative, Q B, and  component terms, Q i 

Figure IV-1 Continued 
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The  depletion  terms,  in  the rate equation for  the  upper-state  population,  are - QP and QrB. The  latter  term,  associated - with  molecular  $issociation,  has 

(QrB-  Q B), and  continues only a very small effect on the  derivative  Q 

to  have  only a small  effect  until  the  gain  and  loss  due  to  the  transitions yB Z YA 

are nearly  balanced.  This  occurs  near  the  end of the  transient  region. In the 

quasi-steady  region  the  relative  values of QIB, QYB, and  QrB  remain  nearly 

constant  and all have  an  equally  important  net  effect on the  derivative QYB. 

Note also  that  the  derivative QYB - is smaller  than  any of its component terms 

(except  the  recombination term, QTB,  of course).  The  behavior  in  the  quasi- 

steady  region  remains  unchanged until the  effects of atom  recombination  become 

important, after which the  final  relaxation  takes  place. In the  final  relaxation 

zone the  derivative QyB has a slightly  lower  value  resulting  in  negligible 

changes  in  the  value of TB. This  variable  may  thus  be  considered  to  have 

attained its final  equilibrium  value. 

Y 

- 7 - 
- 

- 

- 

There are a few essential  features  that  will  be  pointed out for  emphasis. 

We note  in  particular (1) that  the  effects of atom  recombination are negligible 

in both  the  transient  and  quasi-steady  zone;  and (2) that  in  the  quasi-steady 

region  the  transitions  causing  molecular  excitation  are  balanced by the  effects 

of dissociation.  These  points are not  original  to  this  work, but have  been  dis- 

cussed by previous  researchers (see, e.g., 85, 94). Because of the  relative 

simplicity of the  present  model,  however,  the  effects are more  readily  exempli- 

fied  here. 

The rate equations  discussed  thus far are those  relevant  to  the  changes of 

the  population  variables yA, yB, and 7,. Additional  insight  may  be  gained 

from a detailed  examination of the  energy  relaxation  processes  from  which,  for 

example,  the  influence of anharmonicity effects may  be explained. 

In figure  IV-lh are plotted  the  derivative QTA  and the  associated com- 

ponent terms QTA. In this  case  the  dominant  term is the gain term Q T A  

that  represents  vibrational  energy  relaxation  for  the  lowest  energy states, 

denoted A1 . The  only  loss  term is QSTA, which has  only a negligible  effect 
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on the  derivative  Q A in  the  transient  region.  This  term  represents, in 

essence,  the  energy  losses due  to  the  transitions  yA rr y, . Perhaps  the 

most  interesting  observation  that  can  be  made is that  the  effects of the  vibra- 

tional  relaxation  processes Q2TA associated  with  the  states  denoted A2 are 

also  negligible  in  the  transient  region.  This  apparently  means  that  in  the 

transient  region  behind a normal-shock  wave  the  effects of anharmonicity, 

although  potentially  large,  because  the  characteristic  relaxation  time T may 

be  small, are not in fact important. A close  examination of the  term Q2 3 A sug- 

gests  the  reasons  for  this  assertion. First we  note  that  the  factor 

[ 1-A (T)/qA2(TA)] is small  since  the  ratio  A(T)/q  (T ) is initially of order 

unity. The  factor  increases  monotonically as this  ratio  decreases (T is constant 

and as TA  increases,  q (T ) also  increases),  reaching a maximum  value as  

q  (TA)  reaches its maximum.  Even when the  effects of anharmonicity  can  be 
A2 

considered  negligibly  small,  however,  (that is, when A(T)-o and the  factor 

[ I - A ( T ) / ~ ~ ~ ( T ~ ) ]  is unity;  see, e.g.,  discussion  after e.q.  (II-73) of Chapter 11), 

we  have  in  addition  the  Boltzmann  population factor  QA2(TA)/QA(TA) . This 

factor is also  small and has  the  effect of lessening  the  influence of the  charac- 

teristic  relaxation  time T , hence,  the  effect of Q2TA on the  derivative 

QTA . The  noteworthy  conclusion  from  this  discussion is that  the  term QITA , 
which is analogous  to  the  Landau-Teller  expression  (see  discussion  after eq. 

(11-58a) in Chapter 11), governs  the  vibrational  relaxation  in  the  transient  region 

for  the  A-states. 

T 

A2 A 

A2 A 

A2 

The  foregoing  behavior of the  component terms continues  throughout the 

transient zone. In the  quasi-steady  zone,  where TA becomes  constant (see 

fig. IV-la),  the  value of  QTA decreases  abruptly and all the  terms  become 

important.  (Note  also  that  in  the  quasi-steady zone the  sign of QTA alternates 

between  positive and negative  values, as indicated by the  oscillatory  behavior 

of this  quantity.)  Actually,  even  in  the  quasi-steady  region  where QzTA is 

slightly greater than QITA , it   turns out that  the  effects of anharmonicity are 

also not appreciable  (compare, e.g., solutions of the  previous  chapter,  figs. 

111-7 and 111-12). 
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An explanation of the  interplay of the  various  terms  that  constitute  the 

rate equation for QTB (fig.  IV-li) is considerably  more  complex  since 

more  terms are involved  and  the  processes are more complicated. One 

observes  that  there are only two gain terms,  Q1 €3 and  QFB . The  latter 

term,  however,  has a negligible effect on QTB in  the  transient  and  quasi- 

steady  regions  behind a normal  shock.  Thus,  only  one  gain  term  has  any effect 

on the  upper-state  energy  relaxation  processes,  and it turns out that  this  term 

when combined  appropriately with all the  other  terms  yields (when p = 1) 

values  for  the  derivative QTB that are slightly  negative.  This  condition 

causes  the  system of equations  that are solved  for  the  region  behind a normal 

shock  wave  to be  inherently  unstable. For this  reason  the  factor p was 

included,  and  was so adjusted  that  the  sum of all the  separate  terms  yield a 

value of QTB that is very  slightly  positive.  In  particular, p was  arbitrarily 

adjusted so as to  satisfy  the condition 

T 

+ + + IQFBI) - 1 = 1 x ( N - 8 )  

This condition  introduces a problem  to  the  extent  that we are, in  essence,  arbi- 

trarily defining  the  starting  values  for  the  derivative QTB. In practice, how- 

ever,  this  problem  was  not  serious  for  the following reasons: (1) the  factor p 

was  always of order unity  (never smaller than 0.96 in  value  for  the cases inves- 

tigated),  and  imposing  an  uncertainty of this  magnitude is certainly not great as 

compared  with  other  uncertainties  (e.g.,  the  value of kR(TB,T)  contained  in 

QTB). (2) The effect of this  correction  factor is quickly  lost as the  other  terms 

become  important.  The  introduction of the  factor p was only required  for  the 

normal-shock  problem.  In  obtaining  the  expanding  flow,  that is, the  nozzle  solu- 

tions  that are to  be  discussed later, the  factor  was  always set equal to unity. 

(1) 

The  addition of the  factor p therefore  has  the  effect of making  the  system 

of equations  that are solved  stable. It may  be  seen,  however,  that  the rate 

equation  Q  B still shows an  unstable  behavior (its value  oscillates  several 

orders of magnitude  in  value  and,  in  addition,  there are changes  in its sign). 

T 
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Also,  in  contrast  to  the  preceding  derivative QTA, the  beginning of the  quasi- 

steady  zone is not marked  by  any  distinctive  change  in  the  value of QTB.  We 

recall that  in  the  preceding case the  quasi-steady  zone  was  indicated  by a 

rather  abrupt  decrease  in  the  value of QTA. (Note also  that  the  derivative  for 

TA is smooth  throughout  the  entire flow except  for a relatively  small  variation 

in  the  quasi-steady  region.) 

The  interpretation of the  oscillatory  behavior of QTB is complex.  It re- 

quires  an  understanding of the  numerical  integration  procedure (see Appendix E), 

in particular, as regards  the  capability of the  procedure  to  resolve  the  effects of 

"parasitic  eigenvalues" (see also  53 and  53a).  In  addition,  an  understanding of 

the  concept of "local  equilibrium state" (see, e.g., p.  236 of 97) is also helpful. 

It turns out that  the  oscillatory  behavior of the  complete  derivative is largely  a 

characteristic of implicit  methods  and  occurs when the  effects of large- 

magnitude  negative  eigenvalues  (parasitic  eigenvalues) are important. Such 

behavior is more  often  exhibited  in  the  case of nozzle flow (see, e.g., 29,  53a) 

that is discussed  in a later section. 

To interpret  this effect we reformulate QTB in  the  following  manner (see 

p. 236 of 97): 

where T is some  relaxation time that  characterizes  the  relaxation of QTB, 

and X, is some function  that is zero when T is zero.  (The condition T = 0 

is a  formal  characterization of local  equilibrium.) In the  formal  case of local 

equilibrium QTB is equal  to 0/0 and  therefore is indeterminant. In such 

cases  TB is customarily found by  solving X, for  TB (see p. 237 in 97). 

For  the  case at hand such a procedure  complicates  the  numerical  computation 

and is not  necessary  since T is always  non-zero,  although of small  relative 

value (i.e., VT corresponds  to a relaxation  distance  that is small  compared  to 

other  distances  in  the  shock). One important  aspect of the  numerical  integration 
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procedure is that it can  be  used  in  such  cases.  The  oscillatory  behavior of the 

derivative shown in  figure rV-li has a negligible  effect on the  solution  and  the 

resulting  solution  corresponds  to  that  which would be obtained  by setting X. 

equal  to  zero. An essential feature of these  solutions is that  the  variables are 

smooth  (see, e.g., fig.  IV-la)  although  their  derivatives show an  oscillatory 

behavior. 

The state of local  equilibrium  for  the  temperature  TB  prevails  throughout 

the  entire  region  behind  the  normal  shock,  irrespective of the  relaxation  zone 

(this  relative  behavior  was  noted  for all of the  cases  studied).  The  dissociation 

terms  assume  an  increasing  importance  in  the  quasi-steady zone and,  finally, 

as the  effect of recombination  becomes  significant, we have  final and complete 

equilibrium. 

It is of interest  to  observe  the  effect of QFB  in  these  solutions.  In 

Chapter I1 this  term  was  designated as "rate  limiting"  and it may  be  seen  from 

figure IV-l i  that its effect is one of limiting  the rate of flheatinglf of the  upper 

vibrational  energy  levels.  The  term  has  the  opposite  sign  from QTB  and 

serves  to  cancel  the  effect of that  term. In the  quasi-steady  zone  it  also  has 

the  effect of lessening  the  influence of the  dissociation  term.  Because of the 

intercoupling of all the  terms  and  their  complexity,  it is not yet  clear  whether 

QFB is rate-limiting  in  the  sense  used by Pritchard  or  Bray  (14, 71). 

The  discussion  until now has  centered on a description of the  shock-wave 

structure without  concern  for  the  differences  that  occur as a result of using 

different  values  for  the  embedded  parameters.  In  figures IV-2 through IV-7 

the  plotted  solutions  illustrate  the  results for other  values of these  parameters. 

The  values  used  for  these  solutions  are  listed in  Table IV-1. It is to  be  recalled 

that  the  abscissa  scale  represents  the  time  after  arrival of the  shock wave 

normalized  in  such a manner  that  the  effect of differing  densities on the  relaxa- 

tion  processes is removed. 

We observe  first,  comparing  figures  W-1  and W-2, that  the  relative effects 

that  occur as a result of increasing  the  value of the  constant C, (the  constant 
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Adjusted shock passage time, sec 

(a) Temperatures  

3-4 

Figure rV-2. Variables  obtnined  from  shock  solution  versus  adjusted 
laboratory time (associated  parameters  are listed  along 
second  row of table rV-1) 
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Figure IV-2 Continued 
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Adjusted shock passage time, sec 

(c) Concentration,  Lower  States 

Figure IV-2 Continued 
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in TAi ;  note^ eq. (111-12) ) by  about 40 percent are important  to  TA  and  TB  and 

of less importance  to  the  concentrations. We recall also  from  Chapter 111 that 

the  effect of changing C, in  the  manner  indicated  was  effectively  to  increase 

the  characteristic  vibrational  relaxation  time  (actually, by a factor of about 2 

for a temperature Tz  of 16,500" K). This  effect is observed  here as roughly a 

factor of 2 increase  in  the  passage  time of the  transient zone. Also,  TA  and 

TB are different  from  the  values found for  the  previous  solutions  in  the  quasi- 

steady zone. The  effect on the  transient  time is illustrated even more  explic- 

itly  in  figure IV-8, which  will be  discussed later. The  increased  transient 

passage  time  occurs  because , in  effect,  defines  the  time  scale  for  energy 

transfer  to  the  upper  levels;  hence,  increasing T increases  the  transient- 

zone time.  The  rather  large  effect on the  quasi-steady  values  for  the  tempera- 

tures  TA and TB  was  already  discussed  in  the  previous  chapter.  The  reader 

will also  observe  that  there is also  an  effect on the  time when final  relaxation  to 

equilibrium  occurs,  but  the  effect is not large  (less  than a factor of 2).  No 

attempt  will  be  made  to  find  the  correct  values of T i  and  T*B  other  than  to 

show  what happens when different  values  for  the  parameters are used.  However, 

the  importance of having  experimental  measurements of the  relative  amounts of 

energy  contained  in the  vibrationally  excited  energy  states is dramatically 

apparent  here (in particular,  regarding  fluid  flows). Such measurements would 

be  sensitive  indicators  for  the  problem of inferring  more  accurate  values of the 

transition  rates (or vibrational  relaxation  times).  The  author is not aware  that 

any  such  measurements  have  been  made. 

1 

*I 

* * 

In  figures IV-3 and N-4  a r e  plotted  similar  solutions  that  result  after  the 

value of the  constant  b is increased. One recalls  that  this  constant  denotes 

the  separation  between  the  vibrational  energy  levels  having  different  tempera- 

tures TA and  TB. The  previous  pair of solutions,  figures IV-1 and IV-2, was 

for b = 16 ( eb/eD = 0.544) and the  present  pair is for  b = 24 ( €+,/eD = 

0.786). A comparison of figures IV-1 with figures IV-3 or  figures IV-2 with 

IV-4 will show that  increasing  b  reduces  the  difference  TB - TA, as was 

noted  in  the  previous  chapter,  and  has  an  opposite  effect  to  that  observed  from 
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(a) Tempera tures  

Figure IV-3. Variables  obtained  from  shock  solution  versus  adjusted 
labora tory   t ime  (assoc ia ted   parameters   a re   l i s ted   a long  
third row of table IV-1) 
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Figure IV-3 Continued 
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Figure IV-3 Continued 
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Adjusted shock passage  time, sec 

(d)  Vibrational  coupling  factor 

Figure IV-3 Continued 
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(a) Tempera tu res  

Figure IV-4. Variables  obtained  from  shock  solution  versus  adjusted 
lalloratory time (associated  parameters  are listed  along 
fourth row of table IV-1) 
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increasing C, (and  hence T . On the  other hand, increasing  b  produces  the 

same effect as increasing C, on the  passage  time of the  various  zones, as well 

as on the  time  required  to  reach  equilibrium.  In  particular,  these  times  become 

longer. 

A* 

. .  

A comparison of figures IV-1 and IV-5 shows  the  result of decreasing  the 

value of TU  from @,/lo to eD/50. In the latter case  the embedded  param- 

eters were  considered  best  from  the  standpoint of the  quasi-steady  solutions. 

It is to  be  recalled  that  the  effect of reducing TU to e /50 is in  the  direction 

of making  dissociation  "highly  preferential" so that only the  most  highly  vibra- 

tionally  excited  molecules  dissociate. One notes  that  although  the  differences 

between  figures N-1 and IV-5 are difficult  to  discern,  this  change  does  increase 

the  time  required  for  relaxation  to  equilibrium  (also  see fig. IY-8). 

D 

The  effects  occurring  for  weaker  shock  waves  are  illustrated in  figure 

IY-6. Here  the  parameters have  values  identical  to  those  used  for  the  solution 

illustrated in  figure IV-1 except  that  the  temperature Tz is lower. We note 

that  in  this  case a relatively  long  time is required  for  the  passage of the 

transient  zone,  and  in  the  quasi-steady  zone  the  temperatures  T,  TA,  and  TB 

are all equal. Once the  transient zone has  passed  the  entire  vibrational popula- 

tion  may  thus  be  considered  Boltzmann at the  temperature T. Also,  the 

internal  processes  relax  in a sufficiently  rapid  manner  that as soon as dis- 

sociation  begins  (note  fig. IV-6c) the  perturbing  effect of dissociation  has  no 

effect on the  vibrational  population  distribution. 

One particular  feature  to  be noted from  the  figures IV-1 through TV-6 is 

the  comparison of the  quasi-steady  values of the  variables  TA, TB, and V 

with the  values  obtained  from  the  previous  chapter.  The  reasonable  agreement 

that is observed  in all cases  lends  support  to  the  basic  quasi-steady  assump- 

tions  that  were  introduced in the  previous  chapter  in  order  that  those  solutions 

could be obtained. 

A comparison of figures IY-1 and IV-7 shows  the  relative  effects  that 

result when x = xF and x = 1, respectively.  This  parameter  accounts  for 
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(a) Temperatures  

Figure IV-5. Variables  obtained from shock  solution  versus  adjusted 
laboratory  t ime  (associated  parameters  are listed  along 
fifth  row of table IV-1) 
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Figure IV-5 Continued 
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Figure rV-6. Variables  obtained  from shock solutions  versus  adjusted 
laboratory  t ime  (associated  parameters  are listed  along 
sixth row of table IV-1) 
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?igu1-e IV-7. Variables  obtained  from shock solutions  versus  adjusted 
laboratory time (associated  parameters  are listed along 
seventh row of table rV-1) 
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the  effects of anharmonicity  in  the  transition  rates; in the case that  such  effects 

are negligible  this  parameter  has a value  that is unity.  In figures IV-7 are also 

given the  derivatives  and,  in  addition,  the  component  terms  for  comparison  with 

the  similar  quantities of figure IV-1. The  solutions  for  this  latter  case are 

analogous  in  some  respects  to  those of the  Marrone and Treanor  model (58) in 

that no account is made  for  the  more  rapid  transitions  occurring in the  upper 

vibrational  levels.  The  closer  level  spacing for the  B-states is still retained, 

however. One sees that  the  temperature  T& is perturbed  to  values  much  lower 

than T i .  This  was  also  apparent  in  the  quasi-steady  solutions.  The  more 

interesting  feature  in  the  comparison of figures IV-1 and IV-7 is the  very  close 

similarity of the  behavior of the  separate  terms  contained  in  the  derivatives. 

In particular, one may  infer  the  importance of the  Boltzmann  factor  in  reducing 

the term QFA in  figures  IV-lh  and IV-4h. This  term is relatively  much 

smaller  in  the  transient  region  for  this  case  than  in  figure IV-1. One concludes 

that  the  effect of the  Boltzmann  factor is appreciable  for  the  case of figure IV-1 

and  hence  greatly  reduces  the  effect of the  small  relaxation  time T The 

relative  dominance of QTA and QFA a r e  interchanged  in  the  quasi-steady 

region,  but QTA is still  the  major  term.  Thus, although  anharmonicity  has 

some  effect on the  solutions,  it is not a large  effect. 

A2 * 

(IV-B-8). The  Induction  Time _ _ ~  
In  the  preceding  section  the 

detail,  and  the  effects  caused by 

shock-wave structure  was  described  in  some 

changing  the  values of certain of the  parameters 

were  discussed.  The  section  thus  provided  insight  and  familiarity  with  the 

model as regards  normal-shock-wave flow. Here an  additional  comparison  will 

be  made  with  experimental  data  by  using  the  experimental  measurements of 

Wray (99) to  check  independently  the  evaluation of the  parameters  in  the  model 

equations.  Wray  measured  the  lag  time  before he observed  molecular dis- 

sociation;  this  lag  time is related to  the  elapsed  time, after passage of a shock, 

during  which  the  molecular oxygen concentration  remains  essentially  constant 

(see, e.g., figs.  IV-lc,  2c,  etc.). 
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To obtain his  values  Wray (99), using  ultraviolet  absorption  techniques, 

measured  the  intensity of the 1470 ii ultraviolet  line  during  the  passage of a 

shock wave. The  absorption of this  radiation, known as Schumann-Runge 

absorption (12, 99), is dependent on the  number  density of oxygen molecules 

in low-lying vibrational  energy states. The  radiation  absorbed,  measured  after 

the  shock  wave passes  some  observational slit, is thus a measure of the 

molecular-oxygen  concentration.  The  results  reported  by  Wray  were found 

by  extrapolating  back  to  the initial value  the  exponentially  decreasing  absorbed 

intensity,  appropriately  scaled.  The  shock-passage  time  associated with the 

intersection of the  extrapolation  and  the  initial  value  were  defined  by  Wray as 

the "incubation" time.  These  results are denoted  by  Atw  and shown in figure 

rV-8. The  smooth  curves  were  obtained  from  the  solutions of the  model  equa- 

tions.  To  obtain  these  theoretical  results  two  types of induction times are 

defined. In one case the  time, denoted At, ,  is the  time  for  the  concentration 

variable yA to  decrease 0.1 percent.  These  results are plotted as curves (1) 

through (5). In  the  second case the  straight-line  portion of the oxygen- 

concentration  curves is extrapolated  back  to  the  initial  value,  and  the  associated 

abscissa  coordinate,  denoted by A t , ,  is taken as the  second  induction  time. 

The  curves (6) through (8) correspond  to  this  procedure.  Each of the  pairs of 

curves (1) and ( 6 ) ,  (2) and (7 ) ,  and (5) and (8) are obtained  from  the  same  solu- 

tion  and a r e  thus  for  identical  values of the  embedded  parameters. 

Curves (1) through (5) illustrate  the effect on Ati of using  different  values 

for  the  embedded  parameters.  From  curves 1 and 2 we observe first that 

changing  the  value of TU , the  measure of how rapidly  dissociation  drops off 

for the  lower  vibrational  levels  in  the  preferential  dissociation  model  (note 

definition  in  Appendix C), has no noticeable effect on A t , .  The  reason is 

evident i f  one examines  the  separate  derivative  terms  associated with the dis- 

sociation  processes as given in the  previous  section.  The  effects of dissocia- 

tion  that  depend  on  the  parameter  TU are negligible within the  time scale Atl .  
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Figure IV-8. Induction  time  computed  using two different  methods 
and  compared  with  experimental  data of Wray 
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A comparison of curves (1) and (4) shows  the  effect of changing the  param- 

eter C, (see eq. III-12). The  change  in G, as was  pointed  out  previously, 

corresponds  to an increase by a factor of 2 in  the  vibrational  relaxation  time 

at the  higher  temperatures.  The  effect is observed  here as a similar increase 

in  the  induction  time at the  higher  temperatures  and little difference at the 

lower  temperatures. A comparison of curves (1) and (3) shows  that  an  increase 

of 50 percent  in  the level separation  parameter  b  results  in a 50 percent in- 

crease  in  the  induction  time at the  higher  temperatures and  an order of magni- 

tude  increase at the  lower  temperatures.  The  result of using X = 1 rather 

than x = xF is shown in  curve (5). In this  case  there is only a 20-percent 

effect. 

The  most  interesting  observation  to  make  in  figure IV-8 is that with the 

specified  values  for  the  parameters,  the  group of curves  At,  span  values  that 

nearly  enclose  Wray's  data.  More  importantly,  the  temperature  dependence of 

the  computed  values  also  agrees  favorably  with  Wray's  experimental data. The 

choice of the  induction  time A t i  , associated with a 0.1 percent  differential 

decrease in the  concentration  variable y was made  for  several  reasons: 

first, it  was  desirable  to  have a method  for  determining  an  induction  time A t  

that would  not require  considerable  plotting  and  that would serve as a natural 

point at which the  numerical  calculations  could  be  terminated  without  the  neces- 

sity of computing  the  entire  shock  profile.  Second, it was  desirable  to  have a 

scheme  that is readily  applicable  even when appreciable  dissociation is not 

evidenced.  The  agreement,  however, is accidental  since  the  values  assigned  to 

the  embedded  parameters  were  chosen  somewhat  arbitrarily. It was  later 

realized  that  the  induction  time A t i  is not directly  relatable  to  the  experimen- 

tal time At, obtained by Wray! 

A '  

?These  results  may,  however,  be of value  in  an  experiment  that  does not involve 
extrapolation,  but  where  small  percentage  changes  in  the  initial  molecular 
concentration of the  lower states are measured. 
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7 111 II I 
The  method  for  determining At, is similar to  that  used  by  Marrone  and 

Tremor  (58) but is difficult  to  apply  unless  there is considerable  dissociation. 

As was  mentioned,  the Shumann-Runge absorption  involves  primarily  the  low 

lying  vibrational  levels of molecular oxygen. By taking  this  appropriately  into 

account a measurement of induction time A t  can  be  obtained  that would be 

directly  relatable  to A b  and would lie between A t l  and At,(i i ,a,G).  Be- 

cause  the low  lying  levels are most  significantly  populated,  however, it is to  be 

expected  that  an  appropriate  evaluation of an induction  time,  for  comparison 

with  Wray's  data (99), would yield  results  that  are  close  to  the  values At, . 
A comparison of At, and Afw is therefore  the  correct  comparison  for  an 

assessment of the  model  equations. 

Curves (6) through (8) show At, as calculated with different  values  for 

only a few of the  embedded  parameters. A comparison of curves (6) and (7) 

illustrates  the  effect on At, that  results  from changing  the  value of TU. 

Although  changing TU had little effect on A t i  , here  the  effect is appreciable 

(causing  the  curves  to  differ by nearly a factor of 2 at the  higher  temperatures). 

The  principal  reason  for  the  different  behavior  here is that  the  procedure  for 

determining At, , described  earlier,  also  depends on the  slope of the  curve  for 

yA and  hence on the rate of molecular  dissociation.  Reducing  the  value of TU 

is equivalent  to  reducing  the  number of levels  from which  dissociation  effec- 

tively  occurs  and  hence  reducing  the rate of dissociation.  The  parameter At, 

therefore not only measures  the  transient  time but is also dependent  on  the rate 

of dissociation. A comparison of curves ( 6 )  and (8) illustrates  the  effect of 

anharmonicity on the  induction  time At, ; in  this  case  the  effect is appreciable. 

Curve (8) is included only to  illustrate  the  effect of using x = 1 rather  than 

x = XF' 

The  comparisons  that  have  been  made  illustrate  the  differences due to 

changing the  values of certain of the  embedded  parameters. A comparison of 

curves (6 )  and (7) with  the  induction time Atw of Wray,  leads  us  to conclude 

that  the  model  yields  induction  times  that are about  an  order of magnitude  too 

long. This is not too  disturbing when one recalls that  the  initial  values  assigned 
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to  b  were  arbitrary  and  the  values  used  for  TU  were found so  as to depend  on 

b. In this connection it is worthwhile  to  review  briefly  the  procedure  that  led  to 

the  values  assigned  to  the  embedded  parameters (see preceding  chapter).  The 

value of the  separation  b  was  chosen  to  yield a separation  energy Eb that is 

roughly  midway  up the  vibrational  potential-energy  well.  Specifically, we have 

used E ~ E D  = 0.544 and 0.786. These  values  were  chosen  arbitrarily,  although 

they  were thought to  be  reasonable on the  basis of the  results  reported by 

Treanor  (94),  Shuler  (84),  and  Keck  and Carrier (48).  The  values  for  the re- 

maining  parameters,  in  particular  T  were  chosen  (recall  discussion  in U '  
Chapter 111) to  provide a pre-exponential  temperature  dependence  for  the  effec- 

tive  dissociation  rate  that would be  in  reasonable  agreement  with  experiment. 

It  was  also  noted  that  the  small  values of the  parameter  TU  that  were  required 

for  the  proper  pre-exponential  temperature  behavior,  led  to  the  conclusion  that 

dissociation  occurs  only  from  the  very  uppermost  vibrational  energy  level (see 

also  discussion  in Appendix C). In  this  respect  the  preferential  dissociation 

model is consistent  with  other  theories (7, 48, 73, 84, 85) since it is strictly 

"ladder  climbing."  In  the  other  theories  vibrational  excitation  occurs  stepwise 

and  dissociation  (or  recombination)  involves  the  very  uppermost  level only. In 

summary, a choice of b at the  midpoint of the  vibrational-energy  well  requires 

highly preferential  dissociation  in  order  to  produce  an  appropriate  pre- 

exponential temperature  dependence,  and  the  induction  time  that  then  results 

is about an  order of magnitude  too  large. An opposite  result  was  obtained  (see 

(58))  from a non-preferential  dissociation  model  in  that  the  resulting  induction 

times  were  more  than  an  order of magnitude  too  small. 

The  parameters  can  be  readjusted  to  yield  more  representative  values  for 

the oxygen molecule  induction  behind a normal-shock wave. Reducing  the  value 

of the  separation  parameter  b  will  reduce  the induction  time. Such a change 

will yield a larger pre-exponential  temperature  factor  for  the  effective  dis- 

sociation  rate  constant  (specifically, t he  vibrational  coupling  factor V) unless 

TU is also  increased.  Increasing  the  value of TU as b is reduced  will  main- 

tain  the  present  agreement of the  temperature  dependence of the  vibrational 
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coupling factor  and at the  same  time  increase  effectively  the  number of the 

uppermost  vibrational  energy  levels  from  which  dissociation  occurs. One notes 

from  figure N - 8  that  larger  values of TU  (compare  curves (6) and (7)) also 

reduce  the  induction  time  and would thus effect more  favorable  agreement  with 

experiment. After  the  appropriate  value is found for  b and T dissociation 

will  likely  involve  principally  just a few of the  very  uppermost  vibrational 

energy  levels,  and  the  ladder-climbing  concept will probably still apply.  That 

the  Marrone  and  Treanor  model (58) yields  induction  times (when TU = w) 

that are too  small  while  this  model  yields  results  that are too  large  provides 

confidence  that  the  parameter  values  can  be  adjusted so as to  obtain  closer 

agreement with experimental  data  both as regards  the  temperature  dependence 

of the  effective  dissociation  rate  and  the  induction  time. 

U '  

Before  concluding  this  section  there is one  additional  comment  that  should 

be  made. In Appendix B  the  procedure  used  to  account  for  the  anharmonic 

effects  associated with the  transition rates is discussed.  The  procedure  in- 

volves  the  use of two linear  segments  to  approximate  the  rate-of-quantum- 

transfer  relation.  This two-segment  approximation,  although it may  be 

considered  superior  to a single-segment  Landau-Teller  approach, is perhaps 

too coarse.  Introducing  another  segment  into  the  approximation  (and  thus 

another  separation  parameter of the  same  type as rralr) will also have the  effect 

of reducing  the  induction  time. Such an  improvement  may  be of value  although 

it is not expected  to  have a large  effect on the induction  time. 

N - C .  Nozzle  Flow 

(W-C-1) Example  Solution 

In this  section  the flow equations,  given by equations  (F16) of Appendix F, 

are solved by means of the  implicit  numerical-integration  method  (eqs.  (E22) ). 

The  dimensionless  streamtube area is obtained  from A(x) = 1 + ( ~ / 3 . 2 0 ) ~ ,  

which represents  an  axisymmetric  hyperbolic  nozzle. A t  large  distances 

(x >> 3.20) the  geometry is approximately  that of a cone with a half angle of 10". 

The  gas is taken  to  be a mixture of  20 percent  molecular oxygen  with a diluent 
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of 80 percent  argon. For this  calculation  the effects of considering  other  than 

argon as a colliding  partner are again  considered  negligible.  (The  solution is 

thus  obtained  from  the  same  equations as in  the  previous  section  except  that 

the  fraction of the  mixture  that is molecular oxygen is greater  and  the  stream- 

tube area is not constant.) Only one solution will be  given;  this  solution  applies 

to  nozzle flow when the  reservoir  has a temperature of 8,000" K and a pressure 

of 3,000 atmospheres.  The  starting  conditions  for  the  integration  procedure are 

obtained by assuming that  the flow is in  equilibrium  (isentropic) up to and 

slightly beyond the  throat.  The  solution  includes  some of the  effects of recom- 

bination  that  occur  before  the  atom-recombination  processes  freeze, as well as 

effects of the "cooling" of both the  upper  and  lower  vibrational  energy states as 

a result of vibration-translation  energy  interchange.  The  solution  also  demon- 

strates  that  the  vibrational  temperatures and  the  kinetic  temperature a r e  all 

equal  for a relatively  large  distance  downstream of the  throat.  It  will  be shown 

that  this  characteristic  allows  one  to  estimate  an  effective  vibrational  relaxa- 

tion  time  that is smaller than  the  relaxation time of Landau-Teller  theory.  Its 

value is quantitatively  consistent  with  recent  experimental  data (98). It  also 

turns  out,  however,  that  the  smaller  relaxation  time (i.e., smaller as compared 

with  the  time  obtained  from  Landau-Teller  theory) is realized only when the 

vibrational  temperatures  are  large.  The  nozzle  solutions will be  discussed in 

detail  first,  and later the  procedure  for  estimating  the  characteristic  vibra- 

tional  relaxation  time  will  be  described. 

The  results of the  calculations are plotted  in  figure IV-9. Figures IV-9a 

through IV-9g  show nearly  all  the  dependent  integration  variables (T, TA,  TB 

TA, TB, Ta, p ,  and v) together  with  the  pressure  p  and  the  vibrational  coupling 

factor V, which are found from  the  thermal  equation of state (E3) and  equation 

(ClO), respectively.  Also  plotted  in  these  figures are  values  computed for  the 

equivalent  case of equilibrium  nozzle  flow,  where  the  rate  constants are all 

assumed  to  be  infinite.  These  values are  subscripted with  the  letter  e.  The 

derivatives  and  their  component  terms are plotted  in figures IV-9h through 

1 
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I 

X, distance measured from throat,cm 

(a) Temperatures  

F igure  IV-9. Variables  obtained  from  nozzle  solution  versus  distance 
measured  from  the  throat  (associated  parameters are 
the   same as l is ted  for   f igure IV-5) 
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IV- 91. The  notation  used  in  these figures is identical  to  that  used  previously 

(eqs. (IV-2) through  (N-7)). 

Beginning  our  discussion with figure  N-Sa, we observe  first  that  the  tem- 

peratures  T,  TA, and TB are all equal  to a distance of 7 centimeters down- 

stream of the  throat. At  this point  the  lower  state  temperature  TA  starts  to 

differ  from  the  other  temperatures,  and at 10 centimeters  becomes  constant 

(freezes).  The  upper-state  temperature  TB  and  the  kinetic  temperature  T 

continue  to remain  equal  throughout  the flow region shown. Other  calculations 

(not  shown) indicate  that  the  upper-state  temperature will also  freeze when 

lower  stagnation  (reservoir)  pressures are used.  The  freezing of TB  always 

occurs  farther  downstream than  TA. We also  note  in  figure  N-9a  that  T,  T A’ 
and  TB start to  differ  from  their  equivalent  equilibrium-flow  temperature at 

about 1 centimeter  downstream of the  throat.  The flow is nonisentropic beyond 

this point. This is also evident from figures IV-9b and I V - ~ C ,  which  show that 

the  concentration  variables yA, y,, and ya start to  deviate  from  their 

equilibrium-flow  values at about this point. At  a distance of 3 centimeters we 

notice  that  recombination no longer  occurs, as is evidenced by the  constant 

atom  concentration.  The  upper-state  concentration  variable  continues  to  de- 

crease throughout the  entire flow region, but since  its  value is s o  small  there 

is no noticeable  increase of the  lower-state  Concentration.  Changes of the 

lower-state  concentration  occur only where  atom  recombination is observed. 

That  the  decreasing yB affects  the  lower states and is not caused by dis- 

sociation will be  apparent when the  derivatives are investigated. 

The  pressure,  density, and velocity are  compared with their  equilibrium- 

flow equivalents  in figures N-9d  through N-Sf.  The  pressure  appears  to  be 

greatly  affected  by  the  chemical  effects  and not appreciably by the  freezing of 

TA , since  the  rapid  freezing of the  lower-state  temperature TA causes no 

further change of the  pressure  variable.  Density,  however, is affected by both 

the  freezing of the  chemical effects and of TA . In  particular, we have a 
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smaller flow velocity  and  larger mass density  than is obtained  on  the  assump- 

tion of complete  equilibrium.  (Notice  that  velocity is plotted  with a linear 

scale while  density is plotted  with a logarithmic scale.) 

Figure TV-9g shows  the  vibrational  coupling  factor V computed for  the 

nozzle  problem.  This  factor  differs at most  by  only  about 2 percent  from unity 

and  for all practical  purposes  has little effect on the flow. This is in  contrast 

to  the  situation  for  normal-shock-wave  flow,  where  this  quantity  was  very 

important.  There  the  coupling  factor  delayed  the  onset of dissociation.  For 

the  quasi-steady  zone (see, e.g., Chapter 111) this  factor  varied as T-H and 

such  behavior is also  not  exhibited  here. 

1 

An understanding of the  processes  that  occur  during  the  expansion  in  the 

nozzle is, perhaps,  more  easily obtained  by  examining  the  various terms con- 

tained  in  the  model  rate  equations, as was  done for  the shock-wave  problem. 

The  values of these  terms are displayed  in  figures  N-9h  through N- 91). The 

labeling  used  for  the  curves is defined by equations (IV-2) through(1V-7);  theQ- 

quantities  without  subscripts are the  derivatives  while  the  quantities with sub- 

scripts are the  components of the  derivatives. One general  remark should be 

made about the  apparent  unstable  behavior shown by the  complete  derivatives. 

As was  mentioned earlier,  the  implicit  method  was  used  for  these  calculations, 

and a characteristic of implicit  methods is to show  such  behavior  for  the  com- 

plete  derivatives  (notice  that  the  separate  terms are smooth).  This  effect  does 

not  appear  in  the  solutions  where, as may  be  seen,  the  curves  in figures IV-Sa 

through IV-9f are quite  smooth. Although there  appears  to  be a slight  noise 

effect superimposed on the  curve  representing  the  vibrational  coupling  factor 

in figure IV-Sg, the  fact is that  the  scale is greatly  expanded  and  the  noise 

amounts  to only about 0.02 percent.  The  error of the  calculation is about  this 

order of magnitude (see discussion  in Appendix E). 
- 

Figure TV-9h illustrates  the  behavior of &'A . Near the  throat  the gain 

and loss terms are nearly equal and  result  in a derivative  that is small, 

although  sufficiently large  to  cause  about a 30-percent  change  in yA . AS 
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X, distance  measured f rom throat, cm 

- - 
(j) Derivative,  QyB,  and  component terms, QTB 
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the  temperature and  density of the flow decrease  the  derivative  decreases, 

and at  distances  downstream of the  throat  greater  than  about 3 centimeters, 

the  derivative is so small  that no further  effect is observed  for  the  value of 

the  variable  yA . This  quantity is then said  to be  frozen. 

In  figure IV-Si a r e  shown the  derivative  and  component  terms  for  the 

derivative QYa . Here we observe  that  the  behavior  near  the  throat is similar 

in  that  the  gain  and loss terms are nearly  equal,  yielding  smaller  net  values 

for  the  derivative.  The  derivative  Qya is negative,  indicating  that  atom  re- 

combination is occurring.  This  behavior  continues  downstream  for  about 2 

centimeters,  after which  the  gain term QF rapidly  decreases  in  value. Atom 

freezing  occurs  near the  point  where  the  value of Qya is approximately  the 

same as that of i ts   term QTa . The  chemical  "sudden-freeze"  behavior,  dis- 

cussed by Bray (14, 17) and  resulting  in  his  sudden-freeze  approximation (14), 

is clearly  evident  here.  The  sudden-freeze, as normally  applied,  occurs  where 

the  dissociation  term  and  the  derivative  have  about  the  same  values. 

- 

- 

- 

- 

- 

- 
In  figure IV-9j are exhibited  the  terms  for  the  derivative QYB . Because 

the  net  effects of the processes  near  the  throat are the  result of the  small dif- 

ferences between  the terms QTB and QTB , and QZB and QTB , it  is difficult 

to  separate  the  dominant  processes. One can only infer  that all of the  terms 

are  important. At distances  greater  than  about 3 centimeters  the  dissociation 

and recombination  terms  QrB  and QTB , respectively, are small;  and  the con- 

tinued  decrease  observed  for  the  value of y B  (see  fig. IV-9b) is due  to  the 

transitions yB- 

- - - - 

- - 

yA . 
Figure IV-9k shows  the  behavior of the  component terms for  the  vibrational- 

temperature  derivative QTA. The  derivative  oscillates  erratically  for  this 

case, having  both  positive  and  negative  values.  The  value at the  peaks is about 

lo5 %/cm,  while TA itself  varies  between 4,000" and 6,000' K. This  general 

behavior  also  occurred  in  the  normal-shock  problem (see fig.  IV-li),  and  for 

that  case  the  comment  was  made  that  the  upper  states  were  in  local  thermo- 

dynamic  equilibrium.  The  upper-state  temperature  derivative QTB and its 



component terms  are  displayed  in  figure  N-91  and we observe  that  oscillatory 

behavior is again  evident. In the  present  nozzle  problem  both  the  upper  and 

lower  vibrational  energy states are in  local  thermodynamic  equilibrium, con- 

sequently,  TA  and  TB are equal to  the  kinetic  temperature  T  (fig. IV-ga). 

When the  variable  TA  freezes,  at about 10 centimeters  downstream of the 

throat,  the  associated  derivative is small. 

Turning  to  the  component  terms  in  the  derivative,  we  observe  that  the  term 

QFA , which represents  energy  addition  to  the  lower  states, is large.  The 

vibrational  relaxation  terms QTA and Q F A  , however,  although  appearing  to 

be of smaller  magnitude,  also  have a large  effect on the  relaxation  processes. 

It is also  interesting  to  note  that when TA  becomes  constant,  the  terms Q F A  

and QTA are  small  relatively  to  the  term QTA . We may  conclude  that  the 

effect of anharmonicity is small when the  dominant  vibrational  mode  freezes, 

and the  vibrational  model  yields  results  that  are  nearly  the  same as would be 

given by Landau-Teller  theory.  This  point  will  be  discussed  further when the 

characteristic  vibrational  relaxation  time  associated with nozzle flows is 

introduced. 

For the  upper  states we observe  that  although  the  dissociation  term QTB 

and the  atom-recombination  term  QFB are large  relative  to  the  derivative 

QTB , their  net  effect is small.  The  term QTB , representing  vibrational re- 

laxation  in  the  upper  states, is the  dominant  term as a result of the  very  small 

time  scale  associated with  this  equation  (the  associated  equation is considered 

as being  in  local  thermodynamic  equilibrium).  The  "rate-limitingfr term, QFB , 
appears  to  have only a small  effect  near  the  throat  region, but it is very  impor- 

tant after the  lower-state  temperature  freezing  occurs  (about 7 cm  downstream 

of the  throat). On the  basis of the  calculation  the  significance of this  term is 

difficult  to assess. This  term  results  from having  different  temperatures  for 

the  lower  and  upper  groupings of energy  states (see Chapter II); i t  may  be  re- 

lated  to  the  similar  rate-limiting  terms  discussed by Pritchard and Bray 

(14, 71). 
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T h i s  example of nozzle flow has  been  introduced  to  illustrate  the  behavior 

of the  model  equations  for  other  than  shock-wave flow. One important  aspect of 

these  solutions is that  the  upper  vibrational  energy states continue  to  relax  even 

though atom  recombination no longer  occurs. If vibrational  relaxation is gov- 

erned  by a single  term analogous  to  that of Landau-Teller  theory (e.g., as given in 

the  Marrone-Treanor  model (58) ) a different  effect is observed': All  the  energy 

states  freeze  simultaneously.  Bray (14) commented  that a study of the  complete 

set of vibration-dissociation  population  equations  (master  equations)  in which 

harmonic-oscillator  transition  quantities are used  for  the  rate  relations,  will 

yield  the  same  result;  that is, the  vibrational-population  distribution  can  be 

represented as a continuous  sequence of Boltzmann  distributions  described by 

a single  vibrational  temperature,  and  the  freezing of all  the  energy-level popula- 

tions  occurs  simultaneously. In his  study (14) in  which  he allowed  for  multiple- 

level  transitions  for  dissociations  that  occur  above  some  upper  vibrational 

energy  level  that  he  calls  "rate-limiting,"  Bray  obtained  different  behavior. 

The  rate-limiting  level  or  "bottle neck" freezes  first, and  subsequent  vibra- 

tional  relaxation is thereby  prevented..  For  this  case  he  commented  that 

appreciable  energy  may  be  frozen  in  the  upper  vibrational  energy  levels.  This 

effect  was not observed  for  the  solution  presented  here. In this  case  the  upper 

vibrational  energy  states  continue  to  relax  even  after  the  freezing of the  lower 

energy  states. 

The  reader  will recall that  in  the  previous  section  where  the  shock-wave 

flow was  discussed, it was  commented  that  the  value  used  for  the  separation 

level  b  for  the shock-wave  solutions  was  probably  too  large.  Reducing  b 

might  yield  results  analogous  to  the  flbottle-neckff  effect  discussed by Bray. 

This  speculation is based on the  fact  that  the  relative  value of the  rate  limiting 

term QFB is quite  large  for  the  case  studied,  particularly  in  the latter stages 

of the  flow. A s  mentioned  in  the  previous  section,  however,  additional  modifi- 

cation of the  model  equations  may  also  be  warranted  in  that  more  segments  may 

be  required  for  an  approximation of the  rate-of-quantum-transfer  quantity 

introduced  in Appendix B. It is not  yet  clear  whether  the  bottle-neck  effect will 

occur when the  additional  refinements are made. 
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I I 

(IV-  C-2). Estimate of the  Characteristic  Vibrational  Relaxation  Time 
ADDlicable for Nozzle  Flows 

One can  estimate a characteristic  vibrational  relaxation  time  associated 

with the  model  equations  for  flows  in  which  the  upstream  conditions are near 

local  equilibrium.  The  procedure  for  obtaining  this  relaxation  parameter is 

analogous  to  that  described by Vincenti  and  Kruger (p. 236 in (97) ). The  study 

depends on the  results given  in  the  previous  section  in  that we observed  that 

the  vibrational  temperatures are equal  to  the  kinetic  temperature  throughout 

the  greater  portion of the flow and,  once freezing  begins, it takes  place  quite 

rapidly.  This  effect  allows  us  to  answer  in a very  simple  manner  the  question 

as to what  effect  anharmonicity  has on the  process of vibrational  freezing. 

We shall not include  the  dissociation  and  recombination  terms  in  our  inves- 

tigation,  since  the effects being  considered are largely  independent of these 

processes. We base  our  investigation on equation (11-103a) of Chapter I1 and 

seek  the  characteristic  vibrational  relaxation  time  associated with this  equation. 

Rewriting  the  equation,  ignoring  the last two terms, we have 

(IV-10) 

.A 

We recall that  the R i  quantities  measure  the  departure of the  respective 

g-rouping  of vibrational  energy states from  local  equilibrium  and are defined 

according  to  the  relation 

(IV- 11) 
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n 

Since we are concerned  with only small  departures  from  equilibrium,  qr(TV) 

may-be expanded  about the  local  value of the  temperature  T. We thus  obtain 

the  relation 

(IV-12) 

where 

TV = T -  AT 

and 6<(T) = d@(T)/dT is the  vibrational  specific  heat  associated with an 

harmonic  oscillator  molecule  having  an  infinite  number of vibrational  energy 

levels. (For a description of the  notation  the  reader  may refer to  Chapter I1 or 

Appendix A.) The  essential  point is that  for  the flows having  kinetic  tempera- 

tures  that  are  large  compared with the  vibrational  temperature ei associated 

with  the  level  spacings,  the  above  quantity  is  approximated by k  AT  Li(Tv) 

where  k is Boltzmann's  constant. In this  relation  the  dependence on i is only 

through  the  truncation  factor  Li(TV).  Equation (IV-10) may  then  be  written 

(IV-13) 

When equation (Tv-10) is displayed  in  this  form,  the  characteristic  vibrational 

relaxation  time,  denoted by TV, is readily  recognized. We have 
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(N-14) 

The  effect of anharmonicity  insofar as the  model  equations a r e  concerned  may 

be  easily  inferred  from  this  relation.  Landau-Teller  theory  yields  the  vibra- 

tional  relaxation  time r . A study of the  quantity  in  braces  (equivalent  to a 

study of the  ratio r / r  ) thus  allows one to  examine  the  effect of anharmonicity 

in  causing  deviations  from  Landau-Teller  theory. Such deviations  have  been 

experimentally  observed (see, e.g. ,  43,  44, 45, 78,  79, 98) .  

AI 

A1 

In figure IV-10 are plotted  the  ratio r / r  and  the  contribution of each of 
*I v 

the  three  separate  terms  to  this  ratio.  The  ratio is functionally  dependent on 

the  separation  parameters a and b, and on the  temperature-dependent  param- 

eter X(T) (see list of equations at the  end of Appendix B). The  quantity  &T) 

and the  ratio 7 / T  are directly  dependent on this  parameter.  The values of 

these  quantities  for  the  curves  plotted are 9, 16,  and X = X F ,  respectively. 

One observes  that  anharmonicity  causes a reduction  by a factor of between 1/3 

and 1/4 of the  characteristic  vibrational time r as compared  with  the time 

obtained  from  Landau-Teller.  This  reduction  (maximum  curve  value)  occurs 

at relatively  large  vibrational  temperatures,  that is, at  TV M 8,000' K 

(or TV/EIA, 3.6 where eA = 2234). At the  lower  temperatures, 

TV - 0 the  model  yields results equivalent  to  Landau-Teller  theory  (8,49). 

Ai  

V 

1 

Ai ' 
An investigation of the  various  terms  illustrates  the  effect of the  contribu- 

tions of the  various  groupings of energy  states on the  net  effect of anharmonicity. 

The first term is associated with the  lowest  grouping of vibrational  energy 

states, A,; the  second  term is for  the states, denoted A2, that a r e  midway up 

in  energy;  and  the last term is the  contribution  associated  with  the  uppermost 

grouping of vibrational states, denoted  B. A close  investigation of the  various 

terms shows  that  the  population  factors  Qi(T)/QV(T)  have  an  important 
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Figure  N-10. Anharmonicity  effects  from  model  equations 
compared  with  Landau-Teller  theory;  charac- 
teristic vibrational  relaxation  time 
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influence on the  magnitude of the  contributions. Although this is not  explicitly 

shown, it turns out  that  changing  the  value of b  changes  the relative magnitude 

Of (TA  /Tv) and (7 / T  ) but has no effect on their sum. Increasing  the 

value of the  anharmonicity  parameter X (see Appendix B), however,  increases 

the  net  effect of anharmonicity,  and,  accordingly,  reducing x reduces  this  effect. 

Also,  it  may  be shown that  setting x = 1 results  in a ratio T / T  of unity, 

indicating  that  the  model is equivalent  to  Landau-Teller  theory  in  this  case. 

Reducing  the  value of the  parameter a has  the  effect of making  the  parameter x 
effective  over a greater  number of vibrational  energy  states  (see Appendix B) 

and  thus  increases  the  net  effect of anharmonicity. On the whole, the  effects of 

anharmonicity are only crudely  approximated by the  model  equations, a point 

that is best  exemplified by figures B-4 and B-5 of Appendix B. Introducing 

additional  segments  for  an  approximation of the ffrate-of-quantum-transfer" 

relation would yield  more  accurate  relations  for  the  ratio T*~/T~. If as many 

segments are introduced as there are energy  levels,  in  principle a precise  value 

for  the  quantity T /T could be obtained. (Such an  approach  may  not  be  justi- 

fied,  since  the  values of the  transition rates ki,ikl  that would appear in  the 

equation are still not certain.)  It is expected,  however,  that  with  the  values of 

ki, i*1 
results  that are greatly  different  from  those  reported  here. 

1 2  A v3 

Ai v 

Ai 

used  in  this  paper  more  accurate  computation of 7 /T will not yield 
Ai v 
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CHAPTER V 

R~SUMEI 

With the  master  equations as a basis, a simplified  mathematical  mode  has 

been  derived  that is useful  for  studying  the  effects of vibration-dissociation 

coupling  in  fluid  flows.  The  effects of changing  the  values of the  various  param- 

eters contained  within  the  equations  has  been  investigated.  Results  have  been 

given for  the  quasi-steady zone  behind a normal  shock  wave,  for  the  structure 

of the  complete  shock-wave  profile,  and  for  the flow in a nozzle.  It  has  been 

shown that  the  equations  contain  the  minimum  structure  required  to  obtain 

agreement with existing  experimental  data. As more  refined  experimental 

measurements  become  available,  additional  complication of the  model  rate 

equations  may  be  necessary.  The  formalism is sufficiently  general  that modi- 

fications  can  readily  be  accomplished. 

The  most  important  results of this  study are the  recognition of the  neces- 

sary modifications  required  to  Landau-Teller  theory  to  account  for 

(1) The  finite  number of vibrational  energy  levels, 

(2) Molecular  anharmonicity as regards both the  energy-level 

spacing and the  collisional  transition  rates, 

(3) Non-Boltzmann  population distributions. 

To  take  account of (1) the  Landau-Teller  equation  was  modified by the  addition 

of a "truncation  factor." In regard  to (2), the  lrcollisional rate of quantum 

transfer"  was  approximated by linear  functions.  The  results  yield  more  rapid 

vibrational  relaxation of the  upper  energy  states  and  closer  energy-level  separa- 

tion  in  these states. To  approximate (3) the  distribution of energy  was  repre- 

sented  in  terms of two vibrational  temperatures, one for  the  lower  energy 

states  and one for  the  upper  states. 

The  thermodynamic  quantities  that  result  (partition  functions,  energy,  and 

specific  heat)  accurately  approximate  the  equivalent  quantities  computed on the 

basis of spectroscopically  determined data. The  temperature dependence of the 
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pre-exponential  factor  in  the  effective  dissociation rate is accurately  repre- 

sented.  The  assignment of values  to  the  parameters  in  the  model  equations  to 

effect  agreement  with  experimental  values of the induction time behind a normal 

shock wave is by trial and error.  This  process  was not carried  to  completion 

and as a result  values of the induction time  too  large by a factor of 10 were 

computed with the  preliminary  choice of parameters.  The  procedure  for  the 

required  readjustment of the  parameters  has  been  discussed.  The  present 

results show qualitative  agreement of the  characteristic  vibrational  relaxation 

time  associated  with  nozzle  flows  (expanding flow) in  that this time is about a 

factor of 1/4 of that  given by Landau-Teller  theory.  The  equations  reduce  to 

the  form of Landau-Teller  theory when the  temperatures  are not too large. 

Although further  adjustments of the  parameters are indicated,  the  present 

study  shows  that  agreement with available  experimental  data  can  be  achieved 

with a single  assignment of values  for  the  embedded  parameters.  These  param- 

eters (a,  b(TU) and X )  depend only on the  choice of species  in a mixture.  This is 

in  contrast  to  simpler  models  where  different  values  were  required  for  the 

parameters  in  order  to  effect  agreement with  different  experimental  results. 

The  fact  that  the  model  equations  can  readily  be  solved  in  conjunction with 

the  equations of flow has  been  demonstrated.  The  numerical  integration  pro- 

cedure  that was used is also  discussed. 
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APPENDIX A 

THERMODYNAMIC QUANTITIES 

The  thermodynamic  quantities  (partition  functions,  internal  energies, 

specific  heats,  etc.)  that a r e  used  to  obtain  the  solutions  described  in  the  text 

a r e  given in  this  section. Of these  functions,  those  that  pertain  to  the  internal 

energy  modes - translation,  rotation, and electronic  excitation - are listed 

for the  reader's  convenience  with little comment.  These  functions  are  com- 

monly  used, and if supplementary  information is desired,  the  reader  can refer 

to  other  references  (see, e.g., 9, 59, 97). The  functions  relating to the  vibra- 

tional  energy  mode,  however,  are  discussed  more  extensively,  because of their 

bearing on the  vibrational  model  that is the  subject of this  thesis, and because 

they a re  not commonly  used. 

(A-1). General  Relations 

In  the  list of relations  that  follow,  the  subscripts  T, R ,  Ea, and V refer, 

respectively,  to  the  translational,  rotational,  electronic, and vibrational  parts 

of the  indicated  quantities.  To  abbreviate  notation  the  integers 1, 2 ,  3, and 4, 

respectively,  may be used  in  place of the above subscripts.  The  subscript j 

denotes  the  species  for  which  the  quantity is defined.  The  symbols  appearing 

in  the  various  relations are defined  in  the list of symbols. In the  case of the 

relations  referring  to  the  vibrational  mode,  the  additional  subscripts A,, A,, 

and B indicate  groupings of vibrational  energy  states  to which the  molecule 

belongs. In the list that  follows  the  quantities are  separated  according  to  their 

type,  the  "complete"  quantity of each  type is listed  first and the  component 

parts are listed  thereafter. 
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Partition  Functions 

QT,j = VQT,j 
N 

3 

= v  ()l 

(The last  equation  applies  in  the  case of vibrational  equilibrium only; see  eqs. 

(A14) for a description of the  formulas.) 

Internal  Energies 

aen Qj 
= R,T~ - 

aT 

(A30), (A38), and  (A39) for a description of the  formulas.) 
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Enthalpy 

hj = e. + ROT + hy J 

Specific Heats at Constant Volume 

('VIR , j = Ro(aj - 1) 

(The  last  equation  applies  in  the  case of vibrational  equilibrium only; see  last  

section for description of the  formulas.) 

Specific  Heats at Constant Pressure 
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Temperature  Derivative of the  Specific Heats 
(Note: Asterisk  denotes  that  vibrational  contribution is excluded) 

Entropy  Function 

The  contribution of each  internal  energy  mode  to  the  entropy  can  also  be 

defined. Such relations,  however,  are not useful  in  this  paper and will  not be 

given  here.  The  entropy  associated with a  specific  species,  say j ,  will  be 

used and is 

where  the  quantity G. denotes  that  the  volume V (see eq. (Alb)) is omitted 

from  the  translational  partition  function  prior  to  the  formation of the  product 

denoted by equation  (Ala).  The  variable  p.  denotes  the  partial  pressure 
3 

associated  with  the  species j (p = m. kT) . 

J 

j J  

Equilibrium  Constant 

A general  form  for a chemical  equation  (see, e.g., 97) is 
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where  the vij and v i j  are  the  stoichiometric  coefficients  associated  with  the 

reactants and products,  respectively, and Mj (chemical  symbol)  denotes  the 

jth species.  In  terms of this  notation  the  equilibrium  constant K ~ ( T ) ,  associated 

with  the ith reaction, is: 

where 

pij = V i j  - "ij 

and is the  heat of formation of the jth species. 

(A-2). Derivation of the  Relations for the  Vibrational Mode 

Early  researchers  (see, e.g., 8, 30, 36, 62)  assumed  that a molecule could 

be described  as  a  harmonic  oscillator  with an infinite  number of vibrational 

energy  levels. Such a description is attractive  because of the  simple  thermo- 

dynamic  relations  that  result  (see, e.g., 97). These  relations  are  reasonably 

valid  provided  that  the temperature  T  assigned  to  the  vibrational mode (the 

subscript V on T  denoting  vibrational  temperature is dropped  in this  section 

since it only  complicates  the  notation) is very  small  compared  with  the  char- 

I 

i 
I acteristic  dissociation  temperature eD (= EN-i/k). At temperatures com- 
~ 

~ parable  to or higher  than  the  characteristic  dissociation  temperature,  such a 
description fails since  the  vibrational  partition  function and the  vibrational 

energy  increase with increasing  temperature without  limit.  It  follows,  in 

particular,  that  at  high  temperatures  the  amount of energy  contained  in  the 

vibrational  mode  exceeds  the  energy  required  for  dissociation. 

Later  researchers  (see, e.g., 32,  82, 90) remedied this problem by trun- 

cating  the  number of vibrational  levels so that  the  energy of the  uppermost  level 
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and the  dissociation  energy were approximately  equal.  The  thermodynamic 

relations  that result for  this  "truncated  harmonic  oscillator" are also  simple; 

however,  the  effect of truncating  the  number of vibrational  energy  levels is to 

over-compensate  in  the  opposite  sense at the  higher  temperatures (4, 58) in 

that  the  vibrational  partition  function and the  energy  function  are too small. 

In this section a vibrational  model is developed  that  includes a represen- 

tative  number of vibrational  energy  levels and the  effect of molecular  anharmo- 

nicity,  thus  yielding  more  accurate  values  for  the  vibrational  quantities.  The 

model also  retains  some of the  simplicity  characteristic of the  harmonic- 

oscillator  models.  The  development  evolves  naturally  from  the  approach  taken 

in  the  text  to  study  the  effects of vibration-dissociation  coupling  (see  Chapter 

II). The  model  still  contains  some of the  shortcomings of other  models (36, 58, 

93) in  that  the  effects of vibration-rotation  coupling  are not considered.  The 

lack of reliable  values of the  rate  parameters  pertinent  to  rotation  precluded 

the  addition of rotation-vibration  relaxation  effects  into  the  rate  equations (see 

Appendix B); consequently, it is questionable  whether it is of value  to  include 

these  effects in the  thermodynamic  quantities.  For  an  explanation of some of 

the  effects of vibration-rotation  coupling,  the  reader is referred  to  the  papers 

by  Bauer and Tsang (4) and Bauer (5). 

The  approach  taken  in  developing  the  thermodynamic  quantities  for  the 

vibrational  energy  mode is to  assume  that  molecules  can be split  according to 

vibrational  energy  into two separate  groups, a lower and an  upper,  in  the  same 

manner as described  in  Chapter I1 of the  text.  The  separation  level is denoted 

by a (see fig. A-1). The  lower  group of molecular  energy  states  has  relatively 

large  energy  spacing;  in  fact, it has  the  spacing  commonly  ascribed to the 

vibrational mode of harmonic-oscillator  models (e.g., see 97). The  upper 

group of energy  levels  has a reduced  energy  spacing.  The  number of vibra- 

tional  energy  levels is truncated so that  the  uppermost  level  has an energy 

corresponding  to  the  dissociation  limit. An additional  separation  b is intro- 

duced to make  the  thermodynamic  quantities  derived  here  identical  with  the 

quantities  required  in  the  text. As far as the  derivations  in  this  section are 
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concerned,  this  separation  may  be  assumed at any arbitrary  position within  the 

upper  group of vibrational  levels.  The set of energy  levels  in  figure A-1 illus- 

trates  the  placement of the  levels  for  the model  molecule.  The  levels a r e  

numbered  consecutively  starting  with  zero.  The  separation  levels a and b 

a r e  labeled, and the Ai, A2, and B groupings of energy  states are indicated at 

the left-hand  margin. For a  Morse  oscillator  the  vibrational  energy E, for 

the vth level is given by references 9, 40. 

(E,) = v 
M v = O J ,  . . . NM 

where 

The  best  values  for E,, from  spectroscopic  data, are based  on  the  relation 

- wo(xo)Hv2 + w ~ ( y ~ ) ~ v q  v = 0,1, . . . . , NH (AlOb) 

where  the  constants wo, W ~ ( X , ) ~ ,  and w ~ ( y ~ ) ~  are  given,  for  example, by 

Herzberg (40), and NH is defined as  the  largest  integer  such  that E 5 Do. 

It is worthwhile to point  out  that  the  Morse-oscillator  model is known to con- 

tain too many  vibrational  energy  levels  (see, e.g., 58), and the  partition func- 

tions  that  result  are  therefore too large  at  the  higher  temperatures. 

NM 

The  value  commonly  assigned as the  vibrational  energy-level  spacing  for 

harmonic-oscillator  models is E  defined by the  relation? AI 

EAl = (Ei)H - (EO)H '%[l - (xO)M] (AlOc) 

We will  utilize  this  quantity as well as an additional  level  spacing  E  the 

upper  level  spacing,  defined  analogously by 
-42 ' 

tThe  differences  in  EAl,  depending  on  whether ( x ~ ) ~  or ( x ~ ) ~  is the  anhar- 
monicity  coefficient  used  in  equation (AlOc), are insignificant  for  most 
practical  purposes. 

205 



A2[ 

EN- 

Model  Anharmonic 
molecule  molecule 

N - - - - - - - - - - - - 
N-l NM 

"""""" "" 

7 
N-2 
N-3 

b t l  
b 

b- I / 
a+ I I 

/ 
- I .E 

\ o  I 
I 

Figure A-1. Diagram  showing  relative  placement of vibrational  energy  levels  for  model as compared 
to anharmonic-oscillator  molecules 



= %w0 [1 - ~ a ( x ~ ) ~ ]  (AlOd) 

Here it is important  to  use  the  Morse  oscillator  harmonicity  constant, (x ) 

that  yields  smaller  energy-level  spacing  than would be  obtained from (x ) in 
O H  

order  to  compensate  partially  for  the fact that  the  levels are spaced  even 

closer  near  the top of the  potential well. Although this  evaluation of E 

results in  only  a  qualitatively  correct  level  spacing, it will be  shown later to 

lead to good agreement of the  thermodynamic  quantities as compared  with  those 

obtained from equation (AlOb). 

O M  

A2 

The  energies  at  the  separation  levels  are given by 

E, = (a - 1 ) ~  + E 
Ai A2 

(Alla) 

Eb = Ea + (b - a) E 
A2 

( A l l b )  

EN = Eb + (N - b)EA  (Allc) 
2 

where  the  constants  a,  b, and N a r e  defined as the  largest  integers  that  satisfy 

the  relations 

a = [(Ea)M - (EA2 - EA,)l/EAi (Alld) 

= a + - (Ea)M]/EAz ( A l l e )  

= + [.o - (Eb)M]/EAz ( A l l f )  

The  quantities (E,)” (Eb)” and Do are  specified. In terms of these 

relations  the  energies  for  the  various  levels  for  the model are given by 

E v = E  v Ai v 5 a - 1  (A12a) 

(A12b) 

(A12c) 
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The  important  thing  to  observe is that  the  thermodynamic  quantities  for  the 

vibrational  degrees of freedom are defined in  terms of three  parameters, EAi, 

EA (or  Ea), and N (or Do). The  Morse  oscillator  contains two parameters, 

wo and ( x ~ ) ~  (or Do), and the  truncated  harmonic  oscillator  also  contains two 

parameters  E and N H ~ ( o r  Do). The  constants wo and E  insure  that  the 

various  models  have  proper  low-temperature  dependence, and the  inclusion of 

Do, directly or indirectly,  insures  that  the  energy cutoff is accounted  for.  The 

model  has  one  additional  parameter, EA, (or Ea),  that  lies  between  the  lowest 

and highest  levels of the  potential well and improves  the  behavior  at  inter- 

mediate  temperatures. 

2 

Ai Ai 

(A-Za). Partial  Vibrational  Partition  Functions 

The  partition  functions  corresponding  to  the  various  grouping of energy 

levels  can  be  evaluated  in  terms of parameters defined  previously.  The  partial 

partition  function is defined  by  the sum 

where a and a .  a r e  the  appropriate bounds corresponding  to  the  grouping of 

energy  levels  indicated  by  the  subscript i. The  subscript j ,  denoting  a 

specific  molecular  species, is omitted  from what follows to simplify  the 

notation.  Substituting  the  appropriate  values  for  the  energy E, (eqs. (A12) ) 

into  the  preceding  equation, we obtain 

ii 12 

(A14a) 
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'2 [ (v -k:EA2] 
&A2 = exp(- 2) v=a exp - 

( c;) 5' [- IV - b, EA2] 
QB (T) = exp - - exp kT v=b 

where  the  primed  quantities are defined by 

1 - exp [ - (b -2EA21 
1 - exp(- 2) Qi2 (T) = 

(A14b) 

(A14c) 

The  primes  attached  to  the  thermodynamic  quantities Q and QB denote  that 

the  relevant  partition  functions a r e  evaluated  relative  to  their  separate  zeroth 

states,  Ea and Eb,  respectively, and not to the  molecular ground state Eo. 

A2 

The  fractional  population of molecules  that  have  vibrational  energy  corre- 

sponding  to some  specific  level  within a grouping of levels  (say,  for  example, 

the vth level  within  the  B  grouping of levels) is represented by 

exp (- 3) exp[- (v - b, 
nV kT  kT 
n B QB(T)  Qb (T) (A17) 
" - - - 

b s v s N  - 1 

Furthermore, given  the  total  vibrational  partition  function 
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we can  obtain  the  fractional  number of molecules  in any group as a ratio of the 

partial  partition  function and the  total  partition  function. For  example,  the 

number of molecules  in  the  A2-grouping of states  relative  to  the  total  number 

of molecules is given by 

These  ratios  are  important,  for  example, when the  initial  values  for  the  numer- 

ical  integration are  required.  It is necessary  to point  out  that  the  latter  ratio 

is valid  only for  vibrational  equilibrium,  while  the  former  ratio (eq. (A17) ) is 

always  valid  provided  the  appropriate  vibrational  temperature  characteristic of 

the  grouping of states  (Tg  for  the  example  cited) is assigned. 

In  figure (A2) the  molecular  vibrational  partition  functions  are  compared 

for  molecular  oxygen,  computed  on  the  basis of four  different  models,  plotted 

as a function of temperature.  The  curve  labeled  "Morse" was obtained from 

equation (A13) with  values of Ev  computed from  equation (AlOa). The  curve 

labeled  "Herzberg" was obtained  in a similar  manner, but with E, computed 

from  equation (AlOb) and with values  for  the  anharmonicity  coefficients, x. and 

yo, obtained from  reference 40. Equation  (Alc)  was used (with internal  param- 

eters having  values  a = 9, b = 16 ,  N = 32,  0 = 2234, and 0 = 1800) and the 

plotted result is labeled  The  evaluation of equation (A14a) (a = 26 and 

0~ = 2234) yields  the  curve  labeled  "Truncated  Harmonic  Oscillator." 

AI A2 

i 

The  Morse  oscillator  contains too many  energy  levels which, furthermore, 

a r e  spaced too close  together  near  the  top of the  potential well. Consequently, 

its  partition  function is generally  conceded  (see, e.g., 58) to  be too large.  The 

truncated  harmonic  oscillator,  having  relatively  large  level  spacing  for  the 

upper  vibrational  levels,  has too few vibrational  energy  levels and a  partition 

function  that is therefore too small  (see, e.g., 4). The model  introduced  in  this 

paper is in  reasonable  agreement  with the Herzberg  result  that  excludes any 

effect of rotation (as used  here). As pointed out earlier,  it  is perhaps un- 

warranted  to  come  to any specific  conclusion as to the  validity of any  one of the 
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Temperature, "K/1000 

Figure A-2. Comparison of vibrational  partition  function  computed  using 
different  models 
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models  for flow calculations,  since  in all cases the effects of rotation  have not 

been  considered and these  effects  may  be  large,  particularly at the  higher 

temperatures (see, e.g., 4). 

(A-2b). Partial  Vibrational  Energv  Functions 

The  average  vibrational  energy  associated  with  molecules  in  the ith group- 

ing of energy  states is defined by 

The  quantity  qi(T) is readily  related  to  the  partition  functions  defined  in  the 

previous  section  by  the  following  procedure. With the  substitution of the  appro- 

priate  ratio  for nv/ni  (e.g., see  text  preceding eq. (A17) ), the  preceding 

equation  can  be  written 

kT2 aanQi(T) 

aT 
- - 

The above definition is consistent  with  that  normally  encountered  in  statistical 

mechanics (e.g., see 73) and is convenient  in  practice  since  it  gives  the  vibra- 

tional  energy  directly by differentiation of the  partition  function. 

Substituting  the  expressions  for  the  partition  functions  into  the  preceding 

equation  yields 
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where 

These  expressions  can be  modified  to  obtain  an  alternate  form  that is also 

useful. The first terms in  equations (A22),  (A25), and (A26) represent  the 

expressions  that one would obtain for  an  infinite  harmonic  oscillator  (harmonic 

oscillator  containing an infinite  number of levels).  The  second  terms  are 

important only at  the  higher  temperatures  and,  in  effect,  limit  the  values of 

the first terms.  This  may be  shown  in the  following manner, with equation 

(A22) as an  example.  Dividing  the  right-hand  side by the  first  term and retaining 

it as a factor, we obtain? 

'All quantities  defined  in  this and the  next  section  contain  factors  having  the 
functional  form 1 - exp (a). This  form is convenient  for  the  accurate  evalua- 
tion of the  thermodynamic  quantities.  Because  it is not possible  to  evaluate 
1 - exp (a) accurately  for all possible  arguments  on  an  electronic  computer 
having  only a finite  number of significant  digits,  the following relation is used 
when the  arguments  are  small (a < 10-3) 

When the  right-hand  quantity is expanded,  the  equation is seen to be  simply a 
truncated  Taylor's-series  expansion of the  quantity on the  left. 
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Because of their  frequent  occurrence  in  the  text,  it is worthwhile  to assign 

symbols  to  the  separate  factors  in  this  equation. We first  define 

A s  mentioned  previously,  this  quantity is the  vibrational  energy of a harmonic 

oscillator  containing  an  infinite  number of equally  spaced  energy  levels with a 

spacing E The  second  factor  in  equation (A28) will be  called  the  "truncation 

factor"  for  reasons  that will be  explained, and is symbolized as follows: 
Ai* 

In terms of these  functions  equation (A27) is then  simply 

Before  proceeding it is worthwhile  to  discuss  the  above  functions. In figure A-3 

dimensionless  equivalents of these  functions (with internal  parameters  having 

values a = 9 and = 2234 representative of molecular  oxygen) a r e  plotted as 

functions of temperature. Also indicated  on  the  abscissa  scale are the  dimen- 

sionless  units T/eA Dimensionless  quantities a r e  plotted so that all three of 

the  quantities  can be plotted  conveniently  on one graph. At low temperatures, 

T < < @Ai, the  infinite-harmonic-oscillator  energy  function  increases  nearly 

exponentially  with  temperature. At sufficiently high temperatures,  T >> @Ai, 

the  function  can be approximated by Gm (T) = kT (or Gm @)/ kT = 1 as indicated 

in  the figure). The  function  continues  to  increase without bound with increasing 

temperature.  Because of this  characteristic, nontruncated  harmonic-oscillator 

models are  limited in their  usefulness to fluid flows  that  have  relatively low 

temperatures, T < a eA . 

1 

1' 

Ai  Ai 

i 

As regards  the  truncation  factor,  at low temperatures  this  factor is unity 

(as indicated by the  constant  slope in the  figure  that is approximately 

Q /eaei) and remains  nearly unity for all practical  purposes  until  the  second 
Ai 
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Figure A-3. Dimensionless  plot of the  component  factors  required  for  the 
model  vibrational  energy  function 
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term  becomes  important,  that is, when T - (a - 1) @Ai = (the  dimensionless 

quantity  increases  linearly  in this region  because of the  factor  T). At higher 

temperatures,  T > the  truncation  factor  may be accurately  approximated 

by 0,-1/2T (from  the  figure  we  observe  that LA. (T)T/Oa-l-;). The  maxi- 

mum  value of the  product 6 (T) = 6- (T) C (T) at these  extreme  temperatures 

is given by k 0a-1/2, a constant  (this is implied  in  the  figure as a result of the 

approximate  value GAl (T) / k +- N 5 ). 

1 
I 

Ai  Ai  Ai 

1 

One can  obtain  similar  functions  for  each  grouping of energy  levels.  There 

results 

(N - b - 1 ) 0 ~ ~  

T 1: b(T) = 1 - exp (A321 

With the  defining  relations 

the  primed  values of the  vibrational-energy  functions  take  the  form 

The  corresponding  quantities  for  the  unprimed  vibrational  energy  functions are 

given  by 

GA2(T) = 612(T) LAz(T) (-437) 
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where 

Eb 
XB(T) = Cb(T) + - G; (TI 

When each  grouping of vibrational  energy  states  has  the  same  vibrational 

temperature,  the  vibrational  energy  per  molecule  (including all groupings of 

vibrational  energy  states)  can  be  written 

(A41a) 

or,  in  the  case  that only Ai and A, states are to be  combined, 

Figure A-4 shows  the results from  equation (A41a) for  molecular oxygen. Also 

included are  the  corresponding  quantities  computed  from  three  other  vibrational 

models.  These  quantities are obtained by differentiation (see eq. (A21) ) of the 

relations  displayed  in  figure A-2. The  curve  labeled  "Morse"  has  values  that 

are large and the  curve  labeled  "truncated  harmonic  oscillator"  has  values  that 

are small  relative  to  the  curves  labeled  "Herzberg" and  "Model." The  general 

behavior of the  various  models is thus  the  same  here as in  figure A-2. The 

energy  quantity  agrees  very  closely  (differing at most by  about 2 percent)  with 

the  Herzberg  result. 

To  conclude  this  section it will be shown that,  in  the  limit as the  spacings 

 EA^ and  EA^ become  equal,  the  total  vibrational  energy  tends  to a function 

recognized as that  for a truncated  harmonic  oscillator  with  equal  energy-level 

spacing. When the  appropriate  values of the  product  expressions  for  the  energy 
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Figure A-4. Comparison of the  vibrational  energy  function  computed u s i v  
different  models 
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functions (noting qm - qzl = q z  = qB when  EAl =  EA^) are substituted  into 

equation (A41), we have 
V -  

m 
2 

The  expression  in  brackets is the  truncation  factor  for  the  function  qV(T). Sub- 

stitution of the  appropriate  expressions  for  the  truncation  factor and simplifi- 

cation of the  result  yields 

This is identical to LA1(T)  with N substituted  for  the  parameter a as one 

would expect. 

(A-2c). Partial  Vibrational  Specific  Heats - 

The  contribution of the  vibrational  internal  energy  mode  to  the  specific 

heat  at  constant  volume is found from  the  temperature  derivative of the  average 

vibrational  energy.  Consistent  with  the  relations  defined  in  the  previous  sec- 

tions,  there will  be  three  separate  contributions, A,,  A2,  and B, depending  on 

the  specific  grouping of vibrational-energy  states  considered. Additional 

quantities  corresponding  to  the  specific  energy of a non-truncated  harmonic 

oscillator will  also be  introduced and such  quantities will be  superscripted m 

similarly  to  the  analogous  energy  quantities.  Truncation  factors 5 i will  also 

be  introduced. 

The  temperature  differentiations are readily found  and the  resulting 

specific-heat  quantities a r e  as fol1ows:t 

+These  functions  also  contain  the  hnctional  forms 1 - exp (a); see footnote in 
previous  section. 
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SB(T) = 1 - exp [ - ‘N-: - 1) 

2 

exP(?) 

(A44c) 

(A44d) 

(A45a) 

(A45b) 

(A46a) 

(A46b) 

(A46c) 

We note  that  the  primed and unprimed  values of the  specific  heat a r e  equal, that 

is, the  specific  heat is not affected by the  ground-state  reference  energy. 

If consecutive  pairs of energy  groups,  or  all  the  energy  states  collectively, 

have  the  same  temperature,  they  may  be  readily  combined.  For  example,  the 

specific  heat of the combined Ai and A, states can  be obtained  by  differentiating 

equation (A41b) with respect  to  temperature.  There  results 

(A47a) 

If all  the  energy  states  have  the  same  temperature,  the  total  vibrational  specific 

heat is given by 
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The  behavior of the  vibrational  specific  heat  (assuming  that  the  vibrational 

energy  may  be  defined  in terms of a single  temperature, eq. (A47b)) is exhibited 

for  molecular oxygen in  figure A-5. This is a dimensionless  plot of the  temper- 

ature  derivatives of the  energy  functions  displayed  in  figure A-4. The  curves 

for  the  Morse and Herzberg  models are obtained from  equations  very  similar 

to  equation  (A4e),  the  electronic  contribution of the  specific  heat,  except  that 

for  the  vibrational  model  the  degeneracy  g is unity and in  place of the elec- 

tronic  excitation  temperature % j  we use  the  vibrational  temperature  Ev/k, 

where as before E, is obtained from  either  equation (AlOa) or equation (AlOb). 

The Model results  are found from  equation (A4f) o r  equation (A47b). 

These  quantities  display  the  same  relative  characteristics  observed  in 

figures A-2 and A-4. The  curves  for  the  Morse and Herzberg  results show a 

slight  anomalous  behavior  (the  slight  indentation of the  curves  between  the 

temperatures 4,000" and 7,000" K;  also  the model curve  crosses  the  Herzberg 

curve at the  temperature 7,000" K). The  Morse and Herzberg  quantities  are 

computed as differences of terms obtained  by  summation.  The  anomalous 

behavior is attributed  to a slight loss of numerical  significance for these 

quantities  resulting  from  the  procedure  used  in  their  computation.  Since  they 

are not used  for  the  computations  given  in  the  text, it was not felt  worthwhile 

to  make  them  more  accurate.  The  model  results,  however,  are  accurately 

computed. 
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APPENDIX B 

VIBRATIONAL  TRANSITION RATES 

In Chapter II values are required  for  the  vibrational  transition rates 

kv-ltv,  or,  more  specifically,  for  the  parameters  kl,O, X(T),  and the  level 

separation a. The latter quantities are those  used  for  the  approximate rate 

relations (II-45) through (II-48) developed in  the text. Obtaining these quanti- 

ties requires  the  introduction of an  approximation  for a special  quantity  "the 

collisional rate of vibrational  quantum  transfer."  The  linear  vibrational  models 

that  have had widespread  utility,  for  example,  the  Landau-Teller (49) or  Bethe- 

Teller  vibrational  relaxation  model (8) described  in  Chapter I approximate  this 

quantity,  in  effect,  in  terms of a temperature-dependent  linear  function  of  the 

vibrational-energy-level  number v. Such a  relation is unsatisfactory  since  it 

does not take into  account  the  effect of the  more  rapid  transitions  that  occur  for 

vibrationally  excited  molecules. It will be shown that a more  accurate  relation 

can  be obtained if at least 2 connected linear  functions are used for  the  "rate- 

of-quantum-transfer"  quantity. 

(1) (2) 

In the  next  section a discussion will be given of the  transition  rates  appli- 

cable  for  anharmonic-oscillator  models, and the  results of several  different 

theories wil l  be  compared. In the last section  the  procedure  for  approximating 

the  transition-rate  relations will  be  introduced. 

(B-1). Transition Rates, Analvtical  Form 

It will  be shown that  the  vibrational  transition  rates,  applicable  for 

vibration-translation  energy  interchange  involving  atom-molecule  collisions, 

may be represented  in  general by 

kv-1,v = VkO,l(T) G(T,v;x,) @la) 

kv,v-i = exP(Ev,v-l/kT) kv-1,v (Bib) 

(Blc) 
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I ll- 

where 

v = 1 , 2 , . .  . . . , N -  1 

and x. is the  anharmonicity  coefficient (x0 = 0 for  harmonic  oscillators),  v is 

the  vibrational  quantum  number, E, is the  energy of the  vibrational  level  des- 

ignated  v, kOyl and k,,, a r e  the  rates  for  transitions  between  the ground state 

and the  first  excited  state of a molecule, and G is a factor  that  accounts  for 

the  effect of molecular  anharmonicity on the  values of the  transition  rates.  The 

above  formulations  display  the  effect of anharmonicity  explicitly  through  the 

function G. For  example,  setting G equal  to  unity (i.e., G(T,  v; 0) = 1) yields 

the  Landau-Teller  transition  rates (46,  49) for  harmonic  oscillators. 

One may  speculate  on  the  functional  behavior of the  anharmonicity  factor 

G. Since  the  low-lying  molecular  states  are  nearly  equally  spaced and the 

effects of anharrnonicity are therefore small, G should  be  approximately  unity 

for  values of v  near unity.  The  energy-level  spacing  decreases  for  the  higher 

vibrational  energy states as a result of molecular  anharmonic  effects, and we 

may  expect  the rate of interchange of vibrational  energy  occurring  during  atom- 

molecule  collisions  to  increase. We may  therefore  expect  that G is a mono- 

tonically  increasing  function of  v. In this section  the G factor will be evalu- 

ated  from  the  transition rates given  by  Keck and Carrier (48). It will be shown 

that  the  factor  differs  very little from a similar  G-factor  obtained  from  tran- 

sition rates derived by  Nikitin (65) and used  by  Bray and Pratt (18). The rates 

given by Keck and Carrier are  based on quantum-mechanical  treatment of the 

collision  processes, while  the  Nikitin  formula,  obtained  from  a  perturbation 

treatment of the  Landau-Teller  results  (49), is based  on a semiclassical 

approach  to  the  collision  problem.  In  both  cases  the  rates  are  described as 

being  only  qualitatively  correct  (see, e.g., 18);  their  main  shortcoming is that 

they  apply  to  nonrotating  molecules;  that is, they do not include  the  effects of 

vibration-rotation  coupling.  The  effects of this  mechanism  may  be  important 

at the  higher  temperatures (see, e.g., 4, 5, 85), effectively  increasing  the  rate 

- 
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p 
of energy  interchange.  Completely  reliable  values  for  the  rate  parameters 

describing  the  molecular  kinetics,  particularly  the  rotational  processes, are 

not available. 

The rates given by  Keck and Carrier (48) are for a nonrotating  quantized 

Morse  oscillator,  for  which  the  potential  energy is given by (see 48 or 49) 

The  vibrational  transition rates are written 

This  formulation  differs  from  reference 48 only  in  the  notation and the  fact 

that  the  factors  independent of v  in  that  reference  have  been  lumped  together 

here  in  the  coefficient k,,,. (The  present  representation is useful  since  the 

factor k,,, appears  explicitly.  This  factor  may  be found from  experimental 

data as in  Chapter rII or its  value  can  be  estimated  from  the following 

relations.)  The  expressions  given  in  equation (B3) are defined as  follows: 

where 

- 
Z (m,n) = d i ,m  c mn 

is the  bimolecular  collision  rate, 

2 1-13 2 Nv 
w I 2  ( 2 ~  - v) 

a, = - 

is the  resonance  transition  probability  for a Morse  oscillator, 

is the  adiabaticity  factor, 

wV rz kT (Ev - E,-, (B3e) 
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is the  angular  frequency of the  transition, 

E, = eov [1 - &] = eOv[l - xov] @3f) 

is the  energy  (ergs  per  particle) of the  vibrational  level  designated  v,  eo=^ 
is the  ground-state  level  spacing  divided by kT, dn,, is the  kinetic cross 

section  for  collisions  between  molecules  n and collision  partners m, and m 

and n are  the  concentrations of colliding  partners and molecules.  The con- 

stant p3 is the  reduced  mass  for  the  collision, pi2 is the  reduced  mass  for 

the  molecules, T = ~ L d m '  is the  effective  collision  time  for  an  exponential 

interaction  potential V, = Vo exp (- r3/L),  and WO = p d w 2  is the  angular 

frequency of the  transition  between  the  ground and first excited  vibrational 

states.  The  quantity = 4- is the  mean  speed  for  collisions of mole- 

cules and collision  partners, and N is approximately  equal  to  the  number of 

vibrational  levels  in  the  potential  well.  This  notation  has also been  altered 

somewhat from that of Keck  and Carr ier  (48) to  conform with the  notation of 

this  thesis.  For x >> 1, the  adiabaticity  factor,  equation (B3d), can be evalu- 

ated by the method of steepest  descent and is found to  be 

3 WO 

2 

1/2 

f(x) = fl(x) = 8(%) x ' / ~  exp (- 3x2l3)  

By numerical  integration and curve  fitting, Keck and Carrier (48) obtained  the 

expression 

which they  point  out is accurate (* 20%) for 0 5 x 5 20, and bridges  the  gap 

between  impulsive and adiabatic  energy  exchange. 

It will be shown here  that  equation  (B4a)  can  be  related to the  rate  relation 

found  by Nikitin ( 6 5 ) .  On this  basis,  the G-function, defined by equation  (B4a), 

can be  written 
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We obtain  an  approximation  for  G  that is valid  when v is small  compared 

with the  total  number of levels, N, by the  substitution of the  approximations 

an(1 & 6 )  = f a ,  (1 -+6)2’3 = 1 *s 6, and -- 1 where  6  in  this  case is some 

small  number  6 < 1. The G-function can  then be represented by 

2 
1 2  

where  the  subscript  has  been  dropped  in  order  to  differentiate 

036 a) 

036b) 

the  expressions 

denoted  by  equations (B5) and (B6). The  second of the two equations  follows 

from  the  fact  that  for a Morse  oscillator  the  number of energy  levels is given 

by N = 1/2 x. (see, e.g., 9, 40, o r  48), that  is,  the  anharmonicity  coefficient 

x. is determined  from 

The  factor w 0 7  may  be  written  in a more  convenient  form  such  that  its  tem- 

perature  dependence is explicitly  displayed. We first introduce a dimension- 

less constant  defined by 

In terms of this  quantity we then  obtain 
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The G-function may  then  be  written 

where 

(BlOa) 

is introduced  to  further  abbreviate  the  notation. 

The  expression  in  equation (€310) is relatively  simple  in outward  appear- 

ance. When substituted  into  the  equation  for  the  transition  rates,  equation 

(Bla), it yields  an  expression  very  similar  to  the  following  relation  obtained 

by Nikitin ( 6 5 ) :  

where 

(Blla) 

We observe  that 

The  relations  thus  differ  only at the  higher  vibrational  energy  levels;  at  the 

uppermost  level,  where  v = N (recall x. = 1/2 N), they  differ by a  factor  e2. 

Because  these  expressions  are only qualitatively  correct  at  these  high  vibra- 

tional  levels,  factors of order e2 are  certainly not unreasonable. 

It is interesting  to  compare  the  G-functions  obtained  from  the  adiabaticity 

factors  (eqs. (B4a)  and (B4b) with  the  function of equation  (B10).  This  com- 

parison is shown in  figure  B-1,  where  the  parameters  have  been  evaluated  for 

oxygen (see  constants  in Appendix G). The  solid-line  curves are plots of 
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Figure B-1. Plot  showing  relative  deviation of the rate anharmonicity  coeffi- 
cients  computed  using  different  adiabaticity  factors 
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[an GI - a F  (v - l ) ] / a F  (v - 1) , and the  dotted  curves are plots of [an G, - a F x  

(v - l ) ] / a F  (v - 1) ; in  both figures the  vibrational  number  v is plotted  along 

the  abscissa.  The  plots are made  for  three  different  temperatures  that yield 

values of 3oo/kT of 8, 1, and 0.02, and the  corresponding  curves are labeled 

1,2 ,  and 3,  respectively.  In  effect,  the  plots  illustrate  deviations of the G- 

functions from  exponentials whose arguments  vary  linearly in v and inversely 

in  the  one-third  power of the  temperature. Such functional  behavior is exhib- 

ited by horizontal  lines in the figure. The  solid-line  curves,  corresponding  to 

the  adiabaticity  factor fl  of equation (B4a), deviate  significantly  from  such 

functional  behavior,  especially when the  vibrational  number  v is large. Under 

these conditions  the parameter +T (see eq. (B3e) and discussion) is small 

(of order  unity), and the  quantum-mechanical and semiclassical  derivations 

leading  to  these  quantities a re  questionable.  Keck and Carrier (48) introduced 

the  adiabaticity  factor fi of equation (B4b) to  formulate  more  accurately  the 

correct  behavior of the  transition rates for  the smaller values of C+T. The 

dotted curves  corresponding  to this adiabaticity  factor are nearly  horizontal. 

These  curves, however,  exhibit a strong  low-temperature  dependence  that is 

suspect. When v is small and the  temperatures a re  lowest,  the dotted curves 

correspond  to  percentage  deviations  from  zero  that a r e  quite  large (25 to 30 

percent), and we observe that the  quantity +T has  its  largest values.  In  this 

case we expect  that  the  solid-line  curves are perhaps  more  accurate.  This 

supposition  follows  since at relatively low temperatures and for  the  smallest 

values of v  the  solid-line  curves a re  equivalent  to  the  Landau-Teller ko,l 

transition  rates  for which there is good experimental  agreement. Also, for 

this  case,  there is close  agreement with the  Nikitin formula (eq. (611)). We 

shall  consider  that  the  G-factor to be  used  in  equation (Bl) is given by equation 

(B10) for all temperatures and for  the  complete  spectrum of values of the 

vibrational quantum  number v. 

(B-2). ApDroximatine: the  Transition  Rates 

From the  relations of the  previous  section, one can see that a vibrational- 

.relaxation model  containing  transition  rates  that  vary  linearly with  the 
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vibrational quantum  number  v  cannot  account for  the  rapid  relaxation  that 

occurs in the  upper  vibrational  levels.  Linearly  varying rates, such as result 

from  the  study of collisions of atoms and harmonic-oscillator  molecules 

(Landau-Teller (49) and Jackson and Mott (46) ), are very  attractive,  because 

the  resulting  relations  greatly  simplify  the  energy-moment  equations  derived 

from  the  master equations.  This is exemplified  by  the  analysis  in  Chapter I1 

(see  also,  Bethe and Teller (8) and also p. 198 of Vincenti and Kruger  (97)). 

To  account  properly  for  the  nonlinear  effects  resulting  from  molecular  anhar- 

monicity,  one has the  choice  either of developing a relatively  complex model 

based  on  nonlinear rate  constants  that are only qualitatively  correct  or of 

introducing  approximations and thus  extending  the utility of the  existing  models. 

Such models  have  heretofore  been  remarkably  successful  in  describing  vibra- 

tional  relaxation at the  lower  temperatures and have had considerable  appeal 

in flow-field calculations  because of their  relative  simplicity. A procedure 

wil l  be  introduced  here  whereby one can  utilize  the  advantages of linearly 

varying rate  relations, but still account  qualitatively  for  the  more  rapid 

relaxation  occurring  in  the  upper  states. 

The  essential  problem is one of correctly  approximating TI  and T, in 

equations @I-49). This  can  be  accomplished by appropriately  approximating 

the  quantities 

Ev,v- I kv,v- 1 (B13a) 

EV+l,V  kV,V+I  03313b) 

by linear functions  (note  that  Ev,v-l is defined by eq. (Bld) ). These  relations 

represent  the  rate of transfer of vibrational  quanta as a result of collisions 

(vibration-translation  energy  interchange). If one assumes a harmonic  oscilla- 

tor then  the  energy  differences Ev,V-l and Ev+l,V are  constant and the  transi- 

tion rates are given by v k,,,  and  (v + l)k,,,, respectively.  These  relations 

have been  basic  in  previous  models. For a Morse  oscillator  the  energy  differ- 

ences  between  successive  vibrational  energy  levels are not constant,  but  vary 

linearly  with  the  vibrational  number  v  and,  furthermore,  the  transition  rates 
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7' depend  exponentially  on v (see eq. (B10) ). A single  linear  relation is there- 

fore  not  satisfactory. We shall  therefore  approximate  the  above  relations by 

two linear  segments, as exemplified  in  figure B-2. 

L 
I 

I 

I 
I 
I 
I 
L 

\ I 
I 
I 
I 

Figure B-2. Approximation  scheme  for  including  anharmonic effects 

The  ordinate is the  product  under  consideration  made  dimensionless  by  the 

factor (EA kl,o)- i  and the  abscissa is the  vibrational  energy E,; the  smooth 

curve I is the  function to be approximated. We  observe  that  this  curve  attains 

a maximum  very  near  the  dissociation  energy Do. This  maximum is a result 

of the  Morse  oscillator  equations and is probably  not a real  effect.  The  curve 

I will here be approximated by the two straight-line  segments I1 and 111 that 

intersect  near  the  separation  Ea.  The  plot (and the  approximations) is found 

with  the  vibrational  energy E, as the  independent  variable  rather  than  the 

vibrational  number  v  for two reasons: First, the  variation of the  quantity 

Ev,v-l  kv,v-i is least  in  this  case; and second,  the  thermodynamic  energy 

quantities qi(Ti) (see Appendix A) are more  accurately included. The  segment 

11 appropriate  to  the  lower states (with  energy less than  Ea) is the  vibrational- 

relaxation  function  obtained  from  Landau-Teller  theory (8, 49). At relatively 

low temperatures  only  these  states are appreciably  populated.  Since  existing 

low-temperature  theories  have  been  successful  in  their  descriptionof  vibrational 

1 
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relaxation,  particularly behind shock  waves,  there is no reason to alter this 

function.  The  segment III applicable  to  the  upper  states  requires a different 

approach. This  segment lies between a point  on the  smooth  curve (with a 

coordinate E, ) that lies near  the  curve  maximum and the  intersection of the 

segment I at  the  separation Ea. The  value of the  curve  maximum  depends  on 

the  temperature  T.  The  value (a constant) of Ea is chosen  somewhat arbi- 

trarily and wil l  be  discussed later. The  procedure is described  in detail later, 

and compared w%% others by means of figures at the end of this  section. 

. 

m 

From  the above discussion  the  required  relations  can  readily  be found: 

(Ev,v- i h , v -  = vkiYo 0 5 v 5 a (B14a) 

v - a)XR(T) + a- '*'] a s v s N  
EA2 

(B14b) 

is the  slope of curve III shown  in the  sketch and the  parameter a is an  integer 

evaluated  in  such a manner  that (a - 1) EA, + EA2 = Ea  (see Appendix A).  The 

quantity  v  depends on the  temperature;  its value is obtained as an  approxi- 

mation  to  the  actual  coordinate vmax at  which Ev,v-i kv,v-i is a  maximum. 

The  procedure will  be  discussed  shortly. 

mR 

The above relations are associated  with rates of transfer of vibrational 

energy  for  transitions  in  the "backward" direction,  that is, from  the  level  v 

to v-1. Equivalent  expressions  for  transitions  in  the  "forward"  direction, 

Ev,v-i kv-l,v, are found  by requiring  that  the model  equations  have  the  proper 

behavior at  equilibrium. At equilibrium we have nv kv,v-l = nV-' kv-l,v which 

follows as a consequence of "detailed  balancing" or "microscopic  reversibility" 

(e.g., see 97, 100). For  the  model  equations,  there  results 
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(')equilibrium 

(B15b) 

(B 15 c) 

The  required  rate  parameters, of the form given by equations 01-45) in the 

text, a r e  obtained by dividing  equation (B14a) by EAi and equation (B14b) by 

EA2. We obtain 

(1) kv,v-1 = vk1,o l 5 v S a  (B16a) 

where 

The  reverse  rates (eqs. (B15) ) a re  unchanged. 

To  obtain  the  coordinate vm required  in  the above rate  relations w e  need 

the  derivative with respect to  the  energy E,. With Morse-oscillator  values 

for  the  energy  spacing  (Evyv-i =iWo[l - xo(2v - l)]) and equations (61) and 

(B10) for the  transition  rates,  the  energy  derivative of the  product of interest 

is given by 
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To  simplify  notation we define 

The  quadratic  equation  in  the  variable vmax that results when the above 

derivative is set equal to zero is easily  solved.  The  solution is given  by 

1 
QR 2x0 +') 2 + 2xOffR 

4(1 + xo) 

The  root with the  negative  radical is discarded  because  negative  values of 

vmax a re  meaningless. 

Since we a re  seeking only approximate  relations,  it is not worthwhile to 

use the  complicated  expression given above. A simpler one is obtained as  

follows.  Neglecting  the terms 1 /2  as  compared with the  terms  l/xo and 1/p 

and x. as compared with  unity, we have 

The  ratio  4xo/aR is always less  than 1 for  the  temperatures of interest. We 

can  approximate  the  radical  using  the first two terms of a binomial  expansion 

and obtain  for vmax the  approximate  quantity 

An alternative, less accurate  formulation is obtained if terms of order 

(2XO/(YR)' are neglected: 
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The  quantities  vmU,  vmi, and v are plotted versus  temperature  in m2 
figure B-3. We see  that vmi is always greater  than vmax and differs  most 

at a temperature of about 24,00O"K, where  the e r ro r  is about  one vibrational 

level (or about 3 percent).  The  approximate  quantity  v is always less than 

vmax and differs  at  most  from  the  correct  value, vmax, by about five  vibra- 

tional  levels (about 13  percent  error).  The  product  Ev,v-i kv,V-i actually in- 

creases  relatively slowly with increasing  v  until it reaches  its maximum and 

then decreases  very  rapidly (e.g., see fig.  B-2).  The  most  accurate  value, 

vmi, yields  values  for EV,V-i  kvYv-i in  the  rapidly  decreasing  region (vm > 

v m z )  and the  least  accurate  value, Vm2, yields  values  for  the  product quan- 

tity  in  the  slowly  increasing  region (Vm < Vmax). Consequently,  whether  one 

uses  v or  v to represent  vmm  actually  makes  little  difference  in  the 

value of the  quantity  EV,v-i  kv,v-i  that is of interest. We shall  therefore  use 

the  simpler  relation  v when values of  Vm a re  required.  The  quantities 

"2 

1 

2 

mi m2 

m2 r 
(Ev,v-ikv,v-i)/(Ei,oki,o), ( ~ v + ~ , v ~ v , ~ + ~ ) ~ ~ ~ , ~ ~ ~ , ~ )  and their  approximated equiva- 

lents a r e  plotted versus  dimensionless  vibrational  energy,  Ev/EAi,  in  figures 

B-4. The  product  relations  appropriate  for  the  "forward"  transitions are 

labeled (f) and the  "reverse"  quantities  are  labeled (r). Figure B-4a is for a 

temperature  ratio T/0 of unity (@A = 2234°K) , and figures B-4b, B - ~ c ,  and 

B-4d are  for  ratios of 2, 5 ,  and 10, respectively. 
AI I 

Discussing  figure B-4a first ,  one  notes  that  in  this case the  approximating 

method is extremely  poor.  It is obvious that  the  approximate rates have values 

that  are too large in the  region  adjacent  to and above  the separation point 

(Ev/EAi = 9) and the  forward  rate is not large enough at  the  higher  levels.  It 

may  be  shown,  however, (e.g., see Chapter III and IV) that  for  normal-shock 

waves  the  upper  levels a r e  not appreciably populated at  these  temperatures  and, 

therefore,  the  large  differences  between  the  approximate and Morse  relations 

have  little  effect  in  the  application of the  approximate  rates. At successively 

higher  temperatures,  illustrated by  figures B-4b, B - ~ c ,  and  B-4d (note that  the 

ordinate  scale  changes  in  these  figures),  the  approximate  relations  improve as 

regards  their  difference  from  the  Morse  relations, and the  difference  between 
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Temperature, "K/1000 

Figure B-3. Comparison of the  vibrational  energy  level  computed  by  different 
methods that yields a maximum "rate of vibrational  quantum 
transfer"  
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VIB energy, Ev/EA, ,  dimensionless 

@) T = 2 eAl 

Figure  B-4 Continued 

28 
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(c )  T = 5 eA 
I 

Figure B-4 Continued 
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VIB energy, Ev/EA dimensionless 
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m e  

(d) T = 10 
I 

Figure B-4 Continued 
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the  forward rate  relations also becomes less. For nozzle flow where  the  tem- 

peratures  are high,  the rates are  therefore  accurately approximated.  Freezing 

of the  vibrational mode generally  occurs  before  the  lower  temperatures a r e  

reached. 

The  value of the  separation  Ea,  at which the  lower  linear  segment  inter- 

sects the  upper  segment, was chosen so that  the  value of the  approximate  rates 

found for  the  lower  segment,  differ only by a factor of about 2 from  the  Morse 

values.  This  choice is somewhat arbitrary, and Ea  may  be  determined  on  the 

basis of other  criteria when such  approximations a re  worthwhile,  for  example, 

when more  reliable  values of the  quantities  being  approximated are available. 

Then it may  also  be  advisable to make  the  separation Ea temperature depen- 

dent. It may also  be  worthwhile to introduce  additional  segments  for  these 

approximations  (see  Chapters I11 and IV). 

To assess the  effect of the  approximating  procedure  for  the  upper  states, 

it is convenient  to  have a different set  of relations  from  those  just  described. 

Such relations are obtained by following a procedure  similar to  that used  to 

obtain  equations (B14) through (B22). Rather  than  being  based on  the reverse 

rates, however,  the  approximating  procedure is based  here on the  forward 

rates.  It  turns out that  the  resulting  equations are  very  similar, except  that  in 

equations (B14b) and (B16d) xR is replaced by XF, where 

and 
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The  results  from  replacing xR by xF is illustrated  in  figures B-5. The 

labeling has the  same meaning as in  the  previous  figures. Here we observe 

that  the  curves  labeled (f)Model intersect  near  the maximum of the  curves 

( f  'Morse 
intersected  near  the  maximum of those  labeled ( r  )Morse. Temperature 

dependence is similar in that  the  behavior  at low temperatures  (see  fig. B-5a) 

results  in a relatively  poor  approximation. We also note that  the  differences 

between  the  curves  subscripted  "Modelf' and those  subscripted  "Morse" be- 

come less at the  higher  temperatures, and the  approximated rate relations are 

more  accurate. 

where  in  the  previous  four  figures  the  curves  labeled ( r  )Model 

The  quantities XR and XF a r e  plotted versus  temperature in figure B-6, 

and their  differences  may  be  observed by a  comparison of these  curves. We 

see that  the  differences are  greatest  at  the  lower  temperatures (about a factor 

of 4 at about 1000°K) and become less at the  higher  temperatures. At about 

24,000" K, xR and xF are approximately  equal.  It is worth  pointing  out  again 

that  the X quantities, defined as the  ratio kl,,/kl,, (see eq.  (B16d)), are also 

a measure of the  effect of molecular  anharmonicity on the  rate  processes. For 

a harmonic  oscillator we have XF = XR = 1, since  in  this  case both Ev,v-l 

kv-i,v and Ev,v-i  k  v,v-l are  linear functions of v. It  then  follows  that for 

those  temperatures  where  the X(T) are large, the  effect of molecular  anhar- 

monicity is expected  to  be greatest;  conversely, when the X(T) are  small, the 

effects of anharmonicity are  least. We thus  observe in figure B-6 that 

the effects of molecular  anharmonicity are  greatest  at  the  lower  tempera- 

tures ; although  they still  exist  at the  higher  temperatures,  they  are  greatly 

reduced.  This  result is not unexpected if one considers  that when  kT >> Ev,V-l 

(regardless of v) then  the  effect of the  smaller  level  spacing is essentially 

lost  in  the  collision  process.  This should not imply  that  the rate of energy 

transfer is less at  higher  temperatures.  The  quantity X(T) does not include 

the  effect of ki,, (see, e.g., eq. B14a); k1,, increases with increasing 

temperature. 

(2) (1) 

(1) (1) 
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Figure B-5. Comparison of the "rate of quantum  transfer"  quantity, (xF) 
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(b) T = eAi 

Figure B-5 Continued 
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Figure B-5 Continued 

246 



1 
. .  

0 4 8 
VIB energy, E V / E ~ , ,  dimensionless 

(d) T = 10 € 3 ~  
I 

Figure B-5 Continued 
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Temperature, T, “K /1000 

Figure B-6. Plots of the  parameter X(”) versus  temperature 

24 8 



P To  conclude  this  section,  the rate parameters defined in  Chapter 11 by 

i,l equations (II-39), (II-56), @-68), and (II-73) will  be rewritten  in  terms of the 
j 

quantities  derived  here. We obtain 

where 

kb ,b- i EAl 
= (b - a) X(T) + a - 

k ! ; h  

(B24a) 

(B24b) 

(B25a) 

(B25b) 

(B25c) 
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and where x(T) is given by either 

or 

EV - Ea 
mR 

(B28b) 

where 

(B29a) 

(B2  9b) 

The  temperature-dependent  parameters aF and CYR are defined by equations 

(BlOa) and  (B18b). 
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APPENDIX C 

PREFERENTIAL DISSOCIATION  MODEL OF MARRONE  AND TREANOR 

Marrone  and  Treanor (58) introduced a model  that  yields  the  vibrational- 

level  dissociation rates in a useful and rational  manner.  Their  model,  referred 

to as the  "preferential  dissociation model", is relatively  simple  and  introduces 

few parameters  into  the  problem of vibration-dissociation coupling. Further- 

more, it is consistent with recent  theoretical and experimental  evidence  that 

the  dissociation  probability is higher  for  higher  vibrational  levels,  The  deriva- 

tion  given here is slightly  different  from  that  in  the  original  paper,  the  most 

significant  difference  being  that  here  the  level  dissociation rates are 

assumed  to  be negligibly small  for all vibrational  levels below some  level 

designated b. No such  level was introduced  in  the  original  model.  The  final 

equations  remain  very  similar  to  those of Marrone and Treanor. 

A 

,N 

In the  derivation a function pv is introduced  that  represents  the  fraction 

of dissociation  events  taking  place  from  the vth level.  Thus  the sum of pv over 

all levels is equal to 1. The function pv is given by 

where 

From  collision  theory (e.g., see p. 215 in 97), one  obtains 
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I II 

where  the  various  quantities are defined as follows: 

Z(m,n)  bimolecular  collision rate associated with a mixture of gas ,. 
particles m  and  n ( n m n n d k ( E ) ” )  ; 

M(e) activation or  energy  factor,  that is, the  fractional  number of 

collisions with line-of-center  kinetic  energy  greater  than 

the  activation  energy  e  exp -- . ( ( keT))’ 

f(n,m) steric  factor,  that  is,  the  fraction of sufficiently  energetic 

collisions  between  the gas particles m  and  n  that  actually 

result  in a dissociation; N - 1  

C normalizing  constant  evaluated  such  that pv = 1 . 
v = b  

If we assume  that  the  collision  diameter of a molecule is unaffected by its vibra- 

tional  state ~ then  we  have Z(%,m)/Z(n,,m) = %/nB.  Furthermore, if the 

molecular population in  the  vibrational  energy  states is described by a 

Boltzmann  distribution,  the population ratio nv/nB is given by exp(-Ev/kT,)/ 

Qg(Tg),  where .QB(TB) is the  vibrational  partition  function  associated with the 

upper states evaluated at the  vibrational  temperature,  TB , associated with 

these states (see Appendix A). The  activation  factor  (e.g., see p. 218 in (97)) 

is given by exp(-e/kT)  provided only the  kinetic  energy of the  relative  motion 

along the  line of centers between two colliding particles is active in promoting 

a reaction  requiring  an  activation  energy  e.  The  key  to  Marrone  and  Treanor’s 

preferential  dissociation model (58) is the  hypothesis  that  the  ratio of steric 

factors  in equa.tion (C3) increases exponentially  with  increasing  vibrational 

quantum number;  that is, 

where  TU (with dimensions of temperature),  describes how rapidly  the  dis- 

sociation  probability  drops off for low values of v .  
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With the  above  relations  substituted  into equation (C3), we  obtain an alter- 

native  representation  for pv as follows: 

The  normalizing  constant C is readily  evaluated as 

and the  quantity  TF is defined by 

The  final  form  for p, is obtained by the  substitution of C into equation (C5) to 

obtain 

This  expression is very  similar  to  that obtained by Marrone and Treanor. At 

equilibrium we note that  TF = -TU and (pv)eq = exp(Ev/kTU)/QB(-TU). In the 

case  that  TU - 00, we have pv = exp(-E,/kTm)/QB(Tm) where l /Tm = l /TB - 1/T. 

This  corresponds  to  nonpreferential  dissociation  (equal  probability  that  dis- 

sociation  occurs  from any B-state  vibrational  level; see, e.g., 58 or  93). For 

the  other  extreme  case  where  TU < T,  TB , we  have p, = exp(Ev/kTU)/ 

QB(-TU) . We may approximate QB(-Tu)  by exp(EdkTU) exp[(N-b-l)E~~/kw] 

(see Appendix A), and after introducing  the  appropriate  relations  for  Eb and 

E, in terms of €)A2 from Appendix A, we  have pv M exp [(v-N + l ) e ~ , / T u ]  

where N-1 z v  2 b. In the limit that  TU is small  compared  to €3 we  note 

that pv is negligibly small  for all v  except  v = N-1. This  case  corresponds 
A2 
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to highly preferential dissociation-in essence, dissociation involving  only the 

very  uppermost bound vibrational state N-1. 

Substitution of the  probability  factor pv into  equation (Cl)  yields  an  expres- 

sion for  the  level  dissociation  probability kv,N. This  expression, however, is 

not yet  useful  since  it  introduces still another  parameter  into  the  problem,  that 

is,  the  effective  dissociation  rate EF. We can relate f i ~  to  the quantity 

kFeq.(T),  the  dissociation rate constant  that would exist with vibrational equi- 

librium at the  local  translational  temperature T. By definition  the  level  dis- 

sociation rate, kv,N,  depends only on the  translational  temperature  and,  hence, 

is independent of the  number of molecules  in any of the  B  grouping of vibra- 

tional  levels,  that is, the  vibrational  temperature TB. It follows  then from 

equation (Cl),  that  the  level  transition  probability  may  be  defined by either of 

the following pair of equations: 

A 

Equating  these  relations, we  obtain 

(ClOb) 

The  factor  V(TB,T)  thus  defined is called  the  "vibrational coupling factor." At  

equilibrium,  where TB = T, we have  V(T,T) = 1. The  parameter kFeq.(T) 

is, as already  mentioned,  the  equilibrium  dissociation rate. 

A 
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The  level  recombination rate expression ~ N , ~ ( T )  is obtained by invoking 

"detailed-balancing," that is, by assuming  that ~ N , ~ ( T )  is not affected by the 

degree of vibrational  nonequilibrium.  The  appropriate  expression can be found 

by  requiring  that  the rate at which vibrationally  excited  molecules are formed 

as a result of atom  recombination (and having  energy  corresponding  to  the vth 

quantum state) be  identically  equal  to  the rate that  such  molecules are dis- 

sociated (at equilibrium). There results 

(Clla) 

(Cllb) 

where  KB(T) is the  "partial"  thermodynamic  equilibrium  constant  associated 

with the  reaction and is defined  by 

The  "partial"  equilibrium  constant K ~ ( T )  is not the  same as the  thermodynamic 

equilibrium  constant  normally  encountered  in  studies of diatomic  molecular  dis- 

sociation,  but  differs  by  the  factor n/nB = Q(T)/QB(T);  that is ,  

(C13a) 

(C13b) 

where  Qv(T) is the  complete  vibrational  partition  function  associated with the 

diatomic  molecular  species and i (T)  is the  normally  encountered  equilibrium 

constant (e.g., see eq. (A6) ). 
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To  recapitulate,  the form of the  equations  representing  the  level  dissociation 

and recombination rates will be set down. These  equations,  obtained by appro- 

priate  substitution of equations (C9) and (ClO), are as follows: 

(C14a) 

where pv is defined by equation ((38). 
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APPENDIX D 

A STUDY OF THE EFFECT O F  THE TRUNCATION  FACTOR: PROBLEM OF 
UNCOUPLED  VIBRATIONAL  RELAXATION 

The simplicity of the  Landau-Teller  vibrational  relaxation  equation as 

obtained by Bethe and Teller (see Chapter I and also  (8)) is noteworthy. Fur- 

thermore, as a result of the  theoretical  investigations of Rubin,  Montroll, and 

Shuler ( 6 2 ,  75, 76, 81) and  the  favorable  agreement with experiment  the equa- 

tion  has  received  widespread  acceptance. Some investigators,  however, (e.g., 

57, 58) have altered  the  original  formulation by the use of accurate  thermody- 

namic  vibrational-energy  quantities with the  aim of generalizing  the  equation 

to account (1) for the effects of anharmonicity on  the  vibrational  energy and 

(2) for  the  fact  that  there a re  only a finite  number of vibrational  energy  levels. 

Such generalizations  have  been  heuristic  in  that no attempt was made to justify 

their  use in a formal  manner on  the basis of the master  equations. Such "im- 

provements" are questionable  and,  furthermore, may lead  to  erroneous  conclu- 

sions (57) concerning  the  effects of anharmonicity. 

To exemplify  this  the  differences  obtained by the  inclusion of the truncation 

factor  in  the  vibrational  relaxation  terms will be  investigated  for the problem of 

uncoupled vibrational  relaxation.  The  effects  to be discussed are somewhat 

hypothetical  in  that when the  differences are sufficiently  large  the  effects of 

dissociation would also  be  important and should not really be ignored. We are 

concerning  ourselves  then only with the study of the vibrational  relaxation  terms. 

We shall  compare  vibrational  relaxation as given by the  previously used 

equation 
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with that  given  by 

which is the relaxation  equation  obtained  in  Chapter 11, except  that  the effects of 

anharmonicity are ignored and only the truncation  factor is included (see 

eq. (II-106)). In  this  equation  the function  qv is that given by equation (A42). 

Its value of N = 26 yields a characteristic  dissociation  temperature 8 D  that 

is approximately correct for molecular oxygen (OD = 59,368' K). It  must  be 

emphasized  that  the  effect of anharmonicity is not  being  taken  into  account in 

this  investigation.  The  comparisons  that will be  made would show  even larger 

differences if such  effects were accounted for in  the  manner  discussed  in 

Chapter 11. 

Equation (Dl) can  be  readily  integrated to obtain 

where To is the  initial  temperature (i.e., the temperature at t/T = 0). We can 

also  solve  equation (D2a) formally  by  quadrature as follows: 
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4 

.The solutions are compared  in  figures D-1 and D-2. Here the  abscissa is 
."?.rp. 

the  dimensionless  time t/T and the  ordinate is the dimensionless  vibrational 

temperature  TV/T . The dashed-line  curves are obtained from equation (D3) 

and the  solid-line  curves  from  equation (D4) with the  integration done numeri- 

cally  using  an  electronic  computer. We shall  presume  that  our  problem is that 

of studying uncoupled vibrational  relaxation behind a normal-shock wave (of 

course,  ignoring  effects of dissociation)  in a dilute  mixture of oxygen molecules 

in an  inert  diluent of argon  atoms.  The fluid temperature T is impulsively 

changed by the  shock wave from  ambient To upstream of the  shock to some 

large  constant  value  T  immediately  downstream of the  shock. For shock  tem- 

peratures of T = 4000" K (not  plotted),  there is little  perceptible  difference 

between  the two solutions. At the higher  shock  temperatures,  however,  the 

introduction of the truncation  factor  causes  more  rapid  vibrational  relaxation. 

This is illustrated by the  fact  that  the  solid-line  curves are  closer to the 

equilibrium  asymptote  (TV/T = 1) than  the  dashed  line  curves  regardless of 

the time t/T . This is perhaps  better  illustrated by the following table,  where 

the  relaxation  time  required  for the solutions to approach to 10 percent of their 

equilibrium  value is compared. 

Table D-1 

Comparison of characteristic 90-percent  relaxation  time 

T (t/T) 1 ( t h )  2 

8,000 2.12 2.28 

12,000 1.94 2.51 

16,000 1.75 2.75 

We see that  the  stronger  shocks  (indicated by the larger  values  for T) 

yield  the greater differences.  There is nearly a factor of 2 difference  in  the 

last case  listed.  These  differences  occur only because  the  ratio Sv (TV)/ 1: (T) 

is not unity (see  discussion  in  Chapter II). Changing the  functions  qv  in  equa- 

tion (D3) affects  primarily  the  driving  force qv  (TV) - q, (T) and would be 

expected  to  have only a negligible  effect  on  the  relaxation  time.  Hence, it may 
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be  anticipated  that  investigations,  such as that conducted by Maillie and  Hsu (57), 

will show  only a minor effect of "anharmonicity." 

The present model  contains a number of terms of the  type  given by equation 

(D2a) (e.g., see eq. II-95). The parameter a ,  which is equivalent  to N in  the 

case of the first term of equation  (II-95a),  has  values less than 26,  and the  dif- 

ferences  exemplified in table D2 are even  greater. Figures D-2 illustrate  the 

differences when a = 11. (The  quantity  qv  has  the  same  functional  form as 

given  above except  that  the  parameter N is denoted instead by a ; compare, 

e.g.,  eq. (A27) and (A42).) In this case we obtain  the characteristic  relaxa- 

tion times given by the  following table, where  the  values  have  the  same  mean- 

ing as previously: 

Table D-2 

Comparison of characteristic  90-percent  relaxation  time. 

T ( O K )  (t/. ) i (t/. )z 

8,000 1.50 2.40 

16,000 0.98 3.60 

A t  the  higher  temperature  the  values  differ by nearly a factor of four and the 

effect of the truncation  factor is even  greater. 
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APPENDIX  E 

DEVELOPMENT OF THE NUMERICAL PROCEDURE FOR 
SOLVING THE MODEL AND FLUID-FLOW EQUATIONS? 

(E-1).  Introductory  Comments 
~~ 

The  differential  equations  that  describe  the  internal  properties of the  model 

molecule  were  derived  in  Chapter 11; special  solutions  not  requiring  integration 

were  obtained  and  discussed  in  Chapter III. To  obtain  the  "complete''  solutions 

described  in  Chapter IV necessitates a coupling of the  model rate equations 

with  the fluid-flow equations  and  requires a fairly involved numerical  proce- 

dure  for  integrating  these  equations. In particular, the  model  equations will 

here  be  coupled with  the  one-dimensional  fluid-dynamic  equations  to  obtain a 

system of nine  first-order  nonlinear  ordinary  differential  equations. A discus- 

sion  will  then  be  given of the  numerical  procedure  used to integrate  these 

equations. 

It is beyond  the  scope of this paper  to  analyze  the  model  equations  for all 

possible flow fields.  One  can  infer  the  behavior  along  streamlines  in a complex 

flow field,  however,  by  reasoning  from  the  results  obtained  for  shock  waves  and 

nozzle flow. Furthermore,  considerable  data are available  for  such  one- 

dimensional and quasi-one-dimensional  flows,  and  results  may  be  compared 

quantitatively  both  with  experimental  data  and  with  other  vibration-dissociation 

models. Although the  time-independent  one-dimensional  fluid  problem is one of 

the  simplest  to  attack,  such  studies are not  without  difficulty (18, 29, 77). The 

major  problem is that of integrating a system of equations  containing  greatly 

+The  author  wishes  to  draw  attention  to  the  many  valuable  discussions  he  has 
had with his  colleagues  Mr.  Harvard  Lomax and Dr.  Harry E. Bailey, of  NASA 
Ames  Research  Center,  concerning  the  numerical  integration of the  model 
equations  given  in  this  paper.  The  numerical  work was undertaken  while  they 
were completing  the  research  for  several  papers  that are now published (51, 
52,  53,  53a,  54).  The  discussion  here  may  be  considered a brief  summary of 
the  material  relevant  to  this  work and  contained  in  those  papers. 
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different time constants.  This  problem is often referred to as that of integrat- 

ing.!!stiff"equations (29,  25);  the  reason  for  this  designation will be  apparent 

later. 

(E-2). Fluid-Flow  Equations 

The  model  equations  to  be  integrated are given by equations (11-110). These 

equations  must be  solved  together  with  the  fluid-dynamic  equations  to  compute 

the  properties of flow fields  subject to vibration-dissociation coupling. We 

make  the following basic  assumptions: 

(1) The flow is steady,  one-dimensional,  inviscid, nonconductive, 

and nonradiating. 

(2) The  fluid  behaves as a  mixture of perfect  gases. 

The  equations  for  conservation of mass,  momentum, and energy,  respectively, 

are then 

vdv + * = 0 
P 

h + - =  h V2 

2 t  

where p and v are the  mass  density and speed of the  fluid, and A(x) is the 

cross-sectional  area of a streamtube  or a  channel, a known function of the 

distance x measured  along  the flow,  h is the  specific  enthalpy, and M and 

ht are constants. In derivative  form with x as the  independent variable  the 

equations a re  
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These  constitute  three  equations  for  the  four unknowns v, p, p ,  and h. To 

complete  the set we must  introduce  additional  relations  specifying the thermo- 

chemical  state of the gas.  These are given  by the  thermal equation of state 

= p R Z T  

and the caloric  equation of state 

h = Yjhj 
j 

where Ro is the  universal  gas  constant(gas  constant  per  mole), R = Ro (Yj)o 

is the  low-temperature  specific  gas  constant  (gas  constant  per  unit  mass), T is 

the  local or  "translational"  temperature of the  gas, Z = zYj/c (Yj)o is the 

compressibility  factor, Yj is a measure of the  concentration  in  units of moles 

per unit mass of gas, and  the concentration  variable  subscripted o means 

"evaluated at low temperatures."  The enthalpy per  mole,  hj , is defined 

according  to 

j 

j j  

where ej (T) is the  internal  energy  per  mole and ho is the  heat of formation 

per  mole (see Appendix G for  values).  The  asterisk (*) is applied  only when 

the  subscript j denotes a molecular  species and only when the  vibrational 

j 
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energy  is-considered  separately in the  internal  energy o r  enthalpy. In this  case 

the  variable  qj , already  defined,  represents the vibrational  energy  per  mole, 

and the  variable ~j the  vibrational  energy per  unit  mass.  The  functions e j  (T) 

and their  asterisk equivalents el (T) are defined  in Appendix A. 

In general, we can  consider  the  nonequilibrium  thermochemical state to 

be  specified by the two state variables p and T  and  the  nonequilibrium vari- 

ables Yj and ~j . In terms of these  variables  the  equations of state have the 

functional form 

With the state equations we can  eliminate p and h  from  equations  (E2). By 

introducing  the rate equations (11-114) and ( I I - l l O ) ,  we then  obtain  the  follow- 

ing complete set  of differential  equations: 

PA-++A- dv dp  
d x d x  

= -pvAX 

dY A 
dx 

K B  
dx 

%A 
dx 

K B  
dx 

= &  yA 

= &  YB 

EA 
= &  

€B 
= &  
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I I 

The Q s , with appropriate  superscripts, denote  the  right-hand  side of the rate 

equations (11-110), divided by the  velocity  v . These  equations are written  for 

one-dimensional  flows  in  general.  The results  for flow behind a normal  shock 

are obtained by setting  the  cross-sectional area constant, so that dA/dx = Ax = 0. 

Equations  (E7)  can  be  written  in  matrix-vector  form if the vector z* is 
+*T = introduced  such  that its transpose is w (v ,p ,   T ,  Y A ,  YB, EA, EB, Ya), the 

vector F *  such  that  *T=(-p~Ax,O,O,  Q  A,QYB,QEA,QEB,QYa), and the 

matrix [B*] having elements  that are the  coefficients of the  derivatives 

d%*/dx. The result is 

Y 

lB*1 dx = - *  
dG* 

C 

In  the  general  case  the  matrix [B*] will become  singular when the  velocity 

v  has  the  value  corresponding  to the local  speed of sound af (e.g., see Appen- 

dix F). For  this  reason it is advantageous  to  introduce a new independent 

variable s defined  such  that 

e x’ = CJ‘ det ([B’]) 
ds (E9) 

there CJ is an  arbitrary  scaling  constant  that is equal to 1.0 x lo-’’ for  normal- 

shock flow and equal to -1.0 X lo-’’ for  nozzle flow. If we multiply  both  sides of 

equation  (E8) by the  product  det ([B’]) [B*]-i and use  equation  (E9), 

where  det ([B*]) [B*]-i is the  adjoint of [B*].  Finally, we define  the new 

vectors “w and F with one element  more than their  starred  counterparts 

according  to 

4 

+ WT = (“w*T,  x) (El la)  
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that i s ,  

and , further, 

= (i""', det([B*l)) 

(Ellb) 

(El lc)  

The explicit  cepresentations  for the elements of these vectors  are given  in 

Appendix F, along with a minor  alteration  that  facilitates  the  integration of 

the  equations. With the  abbreviated notation we then  have a set  of nine simul- 

taneous  equations  represented  in  vector  form by 

dw = 
ds 

"c 

" G' = Z(G) 

In  this  there is no explicit  dependence of ?j; on the  independent  variable s ; 

that i s ,  the  equations  may  be  described as being autonomous.  These  equations 

and their  dependent  variables are analogous to the  set of equations and variables 

investigated by Lamax and Bailey (53 , 53a).  The  equations are first-order, non- 

linear,  ordinary  differential  equations  and,  in  general, are not easily  solved.  In 

the  next  section  the  difficulties  associated with these  equations wil l  be dis- 

cussed, and the  numerical  procedure  required  for  their  solution will be 

described. 

(E-3).  Review of the Numerical  Integration Methods 

The equations  described  in  the  previous  section,  equations  (ElZ), have 

features not  unlike  those of similar equations  encountered  in  the  study of 

effects of chemical  nonequilibrium  in  fluid flow. Considerable  research 

and computer  time  has  been  spent on the  numerical  integration of such 

systems of equations, and  many different  methods have  been  developed for 

this purpose (63,  68,  69, 95). These  methods fall into two principal  categories, 
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In one,  the  nonlinear  differential  equations are reduced to nonlinear  difference 

equations by the  substitution of difference-differential  expressions  for  the  de- 

rivatives , and the  equations  that result are then  solved  numerically (27, 28, 

29,  30,  31,  32, 95). In the  other, the differential  equations are  first  linearized 

locally, and the resulting  linearized  form is solved  either  exactly  (63,  68, 69, 

72), approximately  (26), or  by finite-difference  methods  (96). On reviewing 

these  methods one observes  that  three  basic  considerations  occur  regarding 

a comparison of the  methods:  accuracy,  stability, and efficiency.  The precise 

definitions of these  terms are given in  references 53, 53a, and 54. Rather  than 

involve  the present  discussion with the  intricacies of these  definitions, i t  suf- 

fices  to  state  that (1) a numerical method is accurate if it produces a solution 

that would agree with an  analytical  solution (if one could be obtained) within a 

controllable e r ro r  (i.e., an error  that may  presumably  be  made  small by reduc- 

ing the  size of the difference  interval); (2) a method is stable if its solution  does 

not diverge; and (3) a method is more  efficient  than  other  numerical  methods if 

it requires less computer  time  to  obtain  the  same  numerical  solution,  numerical 

e r ror  being  roughly  the same. 

From  the  experience gained with the  various  methods,  instability  appears 

to  be  the  most  troublesome  problem in nonequilibrium  studies  in which conven- 

tional  integration  methods a re  used. An unstable method can  often  be  made 

stable by reducing  the  integration  step  size  (29).  This,  however,  often  decreases 

the  efficiency of the method  (many steps  are  required while  the  dependent vari- 

ables change by only very  small  amounts). One also  finds  that  methods  that a re  

always  stable  may not always  be  the  most  efficient or  even  the most  accurate. 

The  interplay of stability,  accuracy, and efficiency is thus  extremely  important 

in  numerical  integration  methods. Such considerations  form  the  subject of 

three  recently published papers by Lomax and by Lomax and Bailey (53,  53a, 

54). Their  recommended  procedures will be followed here. Since an  under- 

standing of a few of their  findings is essential  for the  proper  utilization of the 

numerical  procedure to be described, it is worthwhile to digress and discuss 

their  theories  briefly. 
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~ Lomax and Bailey  have  concentrated  their  investigations  primarily on 

coupled linear  ordinary  differential  equations. They also  discuss, however, 

how their  results extend to certain nonlineal- systems;  specifically,  those  that 

may  be  characterized as quasi-linear (i.e., in which the  highest  order  deriva- 

tive is linear). The  equations of the  previous  section are of this type. To apply 

their  theories it is advantageous first to  obtain a linearized  form of equa- 

tions (E12). Consider  the set of autonomous  equations 

where  the  elements,  say Fi have no explicit  dependence on the  independent 

variable s . If the  right-hand side of the  equation, Fi , is expanded about a 

local  point,  referenced as n  where s = nh, we obtain 

+ 0 [ (G- Gn)2J 

We define 

as the  elements of the  matrix [A], , where  the  subscript  n  signifies  that  the 

quantities are evaluated at the  discrete  reference point  denoted by  n. If 

w = wnll we note  that  the  higher-order  terms  in w - wn can  be  written 

h2[i?n+l - i?d2/h2 o r  h2[w;1I2 plus terms of order 0 (h3) . Thus  in  vector- 

matrix  form we have 

4 4  

The  above  equation is, after higher-order  terms are neglected, a locally  lin- 

earized  form of the  original  equations.  Further,  since  the  original  equations 

were autonomous  the  linearized  equations have constant  coefficients. 
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Equations  (E16) are readily  solved (e.g., see 54) and the homogeneous solu- 

tion  may  be  writtent 

where  the Cij are constants depending  on  the initial conditions and that x. are  

the  eigenvalues  associated with the  system of equations;  that i s ,  they a re  the 

solutions of the characteristic equations [Aij - A. he.] = 0 (6ij is the  Kronecker 

delta function such  that hij = 1 or 0 for j = i o r  j # i). It is typical of equa- 

tions  for  nonequilibrium flow that in certain  regions of a flow field the eigen- 

values hj are large,  negative, real numbers and some  are much smaller  in 

magnitude  than others.  (These  characteristics  are  also found in  the  differential 

equations  that  describe  the  dynamics of "stiff" springs. For this  reason 

systems of equations  having  such  properties a re  often referred to as "stiff" 

equations (25)). 

J 

J 1J 

To facilitate explanation of the  problem,  consider a system of two differen- 

tial equations  with  eigenvalues  represented,  for  example, by = -1OOOp 

and (AZ), = -p , respectively. In the  integration of equations  with  such  eigen- 

values, two cases  can  occur. (1) If the  effect of (hi)n over  the  small  region 

where  exp(-1000ps) is significant and is to be resolved, then we must  perform 

our  calculations a t  points  spaced  very  close  together. (2) If the  value of s is 

large enough that  exp (-1000 ps) is negligible  compared with exp ( -ps ) ,  then we 

need use only the  much coarser  spacing  that  resolves  exp ( -ps) .  However, if 

the  integration is carried out  numerically with  many of the  conventional  integra- 

tion  schemes  (e.g.,  "explicit"  methods  such as the  fourth-order Runge-Kutta 

method),  violent  instabilities  occur  for the coarse  spacing. Lomax and Bailey 

?A different  relation is required when the  eigenvalues h j  are not all distinct. 
This point is considered  in  reference 54 but will be ignored  here as not par- 
ticularly  essential  either to the discussion o r  to the  analysis.  The  eigenvalues 
are not actually  required  in  the  numerical  methods, but a r e  only monitored 
occasionally as a check on the  integration  procedure. This point will be  made 
clear  in the  discussion. 
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(51, 53, 53a) refer to  those  like (Ai), as "parasitic"  eigenvalues and those  like 

(xz), as "driving" eigenvalues. 

Just how the  eigenvalues  affect  the  various  numerical  methods  canbe  under- 

stood  from  the  paper by Lomax (54). He shows  in a rigorous  manner  that if 

each  equation of the set of differential  equations is operated on by identical 

linear  difference-differential  operators (we define  such  operations as "the 

numerical method") then  the  numerical method  "detects"  the  eigenvalues of 

the  differential  equations  and the success or failure of the  method is measured 

by 

(1) Its  accuracy in resolving  the  eigenvalue  for which it is most  accurate. 

(2) Its  stability with respect to the  eigenvalue  for which it is most  unstable. 

Briefly, we may say  that  linear  numerical  methods,  in  effect, "decouple" the 

system of equations, and one needs only to determine  whether a method has  the 

ability to resolve  the  effects  produced by the separate  eigenvalues. The accu- 

racy and stability criteria of a number of numerical  methods a re  cataloged by 

Lomax and by Lomax and  Bailey  in  references 53 and 54. The  efficiency of a 

few of the more  useful  methods  in  the  integration of stiff equations, is discussed 

in  reference 54. Lomax and Bailey conclude that at  least two types of difference- 

differential  operators are  required  for  rapid  integration of the  equations of non- 

equilibrium flow. Two satisfactory  methods  are  the  explicit and implicit 

methods  described  in  the following discussion. 

The explicit method  used by Lomax  and Bailey (53) with considerable  suc- 

cess,? and employed to obtain  the  solutions of Chapter IV, is referred to as 

either  an  "Euler  predictor with a modified Euler  corrector"  or as a 

t Lomax andBailey (51,  52, 53, 53a, 54)  do not extol any particular method or 
combination of methods as being  universal  techniques. On the contrary,  they 
have invmtigated and reported on the  merits of a number of methods. 
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"second-order  Runge-Kutta  methodJ1.  The  method is defined  by  the  difference- 

differential  equations 

The  quantity  h is the  interval  size and  the superscript  in  parantheses  denotes 

the  iteration  number.  (The  superscripts are omitted  from  the  symbols  that 

represent  the  final  values of the  dependent  difference  variables. Note the  omis- 

sion of (2) on Wn+i in  the  second  equation  above.)  Equations (E18) have a 

truncation  error (hh)3/6  when applied  to  linear  equations  and a real stability 

boundary of -2.0 (see (54) for  the  definitions  associated with  the  terminology 

and  for a discussion  on  these  given  values). If Ah > -2.0 then  numerical  insta- 

bility will not  occur. We may  exemplify  this  further  by  returning  to the 'Ywo- 

eigenvalue"  problem  discussed earlier. We see that  stability  will  be  assured 

provided  the  integration  interval  size is the  smaller of the two values 

(hi), < 2 x 10-3/p and  (h2)n < 2 / p .  The  smaller  value, of course, is (hi)n  and 

is the  interval  based on the  "parasitic"  eigenvalue. Also the effect of trunca- 

t ion  error  on  the  dependent  variables is, to a great extent,  determined by  the 

"driving"  eigenvalue.  Although  the  solution  values are little affected by the 

parasitic  eigenvalue,  stability  depends  on  this  eigenvalue,  and if the effect of 

the  parasitic  eigenvalue  could  be  ignored, a three-order-of-magnitude  increase 

in  interval  size would be  possible,  in  principle.  Implicit  methods  have  such 

desired  characteristics. 

4 

, The  implicit  method  used by Lomax  and  Bailey (53) is the "modified Euler 

method"  defined  by  the  difference-differential  equation 
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This  equation  contains  derivatives  that  must be evaluated in terms of the un- 

known dependent  variables  Gn+l.  Application of this  equation is facilitated by 

the following procedure. If we substitute $n+i = 7 given by equation  (E16) 

for F (Wn+l) , the  equation  can also be  written 

dGn+ 1 

" 4  

or  we can  combine  terms and obtain  the set  of simultaneous  equations given by 

where  [I] is the unit matrix  (matrix with diagonal elements of unity and off 

diagonal  elements of zero).  These  equations  may  be  readily  solved  for the 

unknown quantities %,+I, with the resultt 

Although,  the  equation  may now be  considered  explicit  since  the unknown quan- 

tities  are now relatea to quantities  that are readily  evaluated, we shall continue 

to refer to  this  method, and as well as methods  requiring the evaluation of the 

Jacobian  matrix  A, as implicit.  It  can be shown (53,54) that  the above  method 

is unconditionally stable  for all real negative  values of  Ah. (The  truncation 

e r ro r  is ( ~ h ) ~ / l 2  when applied to linear  equations.  See 54.) 

+In  practice  the  matrix  inversion  that  yields  equation (E22) may  cause  machine 

"overflows" if the matrix [[I] - 2 [A],] is not first  properly  scaled.  This is 

easily done. If we let [SI be  a diagonal matrix of which the  elements  are  the 
reciprocals of the maximum-valued elements of the  row  vectors of the  matrix 

to  be  scaled,  then  Sij [[I] - 2 [AlnIij 5 1 and inversion  difficulties a re  not 

encountered.  Thus,  in  practice,  the  inversion  procedure  given by 

h 

h 

is to be  preferred. Equations  (E22)  and  (E23) are exactly  equivalent. 
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With the  use of the  implicit method we have  gained  "stability" when the 

parasitic eigenvalues are important, but at the  expense of additional  computa- 

tional  complexity.  Specifically,  the  elements of the  Jacobian  matrix, a* .  must 

be computed. Although additional  computer  time is required  to  advance a step 

with  the implicit  method,  considerable  saving  in  the  computational  time  required 

to  obtain the entire  solution  may be obtained since  large  step  sizes are possible. 

In  particular,  the  intervals are  large  relative to those  required  for  explicit 

methods  that a r e  dominated by stability  criteria. 

1J ' 

The  application of the  implicit method is made  considerably easier if one 

obtains  the  matrix  elements by numerical  rather than  analytical  differentiation. 

The procedure  to use is that  suggested by Lomax and Bailey (53) and is indi- 

cated by the  formula t 

aFi AFi Fi(l.Ol x w.) - Fi(0.99 x w.) 
aij = " - - 

awj awj  0.02 x W' (E24) 
- - - 

J 

?Some of the  individual  elements, aii , obtained by numerical  differentiation,  may 
not agree with the similar elementiobtained by evaluation of the  relations found 
by analytical  differentiation.  This  occurs when there are large-magnitude  dif- 
ferences between  the  individual terms.  For  example, i f  

Fi a\,j wj 

where 

one obtains  "numerically"  aik = 0 and "analytically aik=  ai,k  using  an  elec- 
tronic  computer with an  eight digit  mantissa.  The fu l l  implication of this  dif- 
ference is not yet  understood, and  the disagreement is pointed out only as a 
potential  source of difficulty.  Actually,  neither  the  author  nor Lomax and 
Bailey (53) encountered  any  difficulties  from  equation (E24) (except when try- 
ing  to  compare  matrix  elements).  Considerable  time was  expended and diffi- 
culty  experienced,  however,  in  trying  to  evaluate and use  analytically obtained 
matrix  elements.  The  Jacobian  matrix  contains 81 nontrivial  elements  for the 
case studied  in  Chapter IV, and only  a few a re  identical  zero. 
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One additional  numerical  parameter  requires  some  discussion. This is the 

interval  size "h" contained  in both integrating  methods.  During  the  course of 

.a-numerlcal  integration  the  interval  size was allowed  to vary  in a manner  simi- 

lar to that  discussed by Lomax  and Bailey,  but  according to the following 

specific  criteria. 

(1) If for all variables wj we have [(Wj)n - (Wj)n-i]/(Wj)n-i 5 0.025 E , 
then  the  interval  for  the  next  point was ,doubled,  that is ,  hn+i = 2hn , 

(2) If for any variable wj, say Wk, we have [(W& - (Wk)n-i]/(Wk)nl.l > 0.1 E, 

then  the  interval  size hn was halved and the (G)n were recomputed. 

(3) If neither condition (1) nor condition (2) was satisfied, then the  vari- 

ables G)n+i for  the  next  point were computed with unchanged 

interval,  that i s ,  hn+, = hn . 
For  most  calculations E = 0.5 was used. With this  scheme  it  turns  out  that 

any reasonable  "initial  value" hi may  be  used  for  starting  the  integration 

procedure. The  above criteria  were  more  stringent than the  conditions  used 

by Lomax and Bailey (53) where E = 1 .0 .  These  criteria were required to 

assure  sufficient  accuracy  for  the  cases  investigated. 

The importance of using a combination of explicit and implicit  methods  can 

be illustrated by plots of the  eigenvalues and of certain key parameters  based 

on these  eigenvalues for a few of the cases  discussed in Chapter IV. In particu- 

lar, we shall  exhibit the effects  that  occur when the  stability  criteria  are not 

satisfied. Figures E-1 show the  eigenvalues and the parameters lAmin  hl and 

lAmax hl corresponding  to the solutions given by figure IV-1 of Chapter IV. 

The similar  figures E-2 correspond to the  solution of figure IV-6. Theabscissa 

scale  here is the same as that in the  figures  in  Chapter IV. The  eigenvalues 

were computed for  every  third point of the solutions. In figure  E-1  the  transient, 

quasi-steady, and final  relaxation  regions are again  labeled by the  numerials 1, 

2 ,  and 3, respectively.  In  obtaining the solutions  the first 125 points  were  com- 

puted with the  explicit  method,  equation  (E18), and  the remaining  points  (roughly, 

between 200 and 250 points) were computed with the  implicit  method,  equa- 

tion  (E22).  The  "switch  point," at which the  integration method was changed, 
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is indicated on these  figures  by a dashed  vertical  line. One observes  that  the 

equations a re  quite "stiff" throughout the  entire flow region,  since all the  large- 

magnitude eigenvalues are negative and are very  large  compared with the  driv- 

ing  eigenvalues.  The  driving  eigenvalues a re  the  very  small  quantities having 

values of order to in  figure  E-1 and  to in  figure E-2. The 

precise  values of these  small  eigenvalues are not to be  trusted,  since  there is 

some doubt a s  to  whether  the  computer  program  can  accurately  compute  eigen- 

values having values  seven  orders of magnitude less than the  largest eigenvalue. 

One may  be sure, however,  that  the small  eigenvalues are no greater than  those 

shown. (Note also  that  the  small  eigenvalues are distributed less randomly as 

the  largest eigenvalue  becomes  smaller.) 

The fact  that the equations a r e  "stiff" appears to be a characteristic of 

vibration-dissociation coupling  and may  explain  the  computational difficulty 

experienced  in  references 18 and 77. Such behavior is usually not observed 

for shock-wave  flow  governed  only by chemical  relaxation (note  the solutions 

exhibited in (53)), and explicit  methods are then  quite  satisfactory.  Actually 

the  implicit method  could well  have  been  used  throughout  the  entire flow region 

for the  shock-wave cases  that were investigated  for  this  thesis;  however, only a 

very  small amount of computer  time was  expended in  using  the  explicit  method. 

Although, it may appear on the bases of the figures,  that a large  fraction of the 

entire flow region was computed with the exTIicit  method,  the reader is to be 

reminded  that the variables  are plotted  with a logarithmic  abscissa  scale. 

The figures show that  the  eigenvalues  vary  primarily  in  the  transient 

region and remain  relatively  constant  in  the  other  regions.  Another  feature 

to  note is that  figures  E-1 and E-2 exemplify  strong and weak shock  waves, 

respectively, and there is roughly an  order-of-magnitude  difference in  the 

eigenvalues.  The  strong  shock wave has  parasitic eigenvalues with the larger 

values. The general  character of the locus of eigenvalue  points remains rela- 

tively unchanged independently of the  strength of the  shock wave. 

The effect of exceeding  the  stability  criteria may be  observed  in  figures  E-lb 

and E-2b,  particularly the latter  figure. A comparison of these  figures with 
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figures IV-1  and IV-6 shows  that  whenever  the  quantity I h i n  hl exceeds  the 

stability  criterion  (i.e.,  whenever lkmin hl > 2 ) ,  then  unstable  behavior is 

 exhibited in the  solutions.  This is particularly  evident  in a comparison of 

figures E-2b and IV-6, where E = 0.75 rather  than E = 0.50 was  used  to 

find  the  interval  size.  The  most  dramatic effect, which exemplifies  the  value 

of implicit  methods  for  overcoming  numerical  instability, is the  almost  imme- 

diate  damping of unstable  behavior  directly  after  switching  methods.  Since 

the  stability  criterion no longer  applies,  there is then a rapid  increase  in  the 

size of the  integration  interval.  This is shown in  figures  E-lb and  E-2b  by the 

rapid  increase in the  value of ]Amin h I . 
Figures   E-lc  and  E-2c a r e  plots of the  quantity lhmax hl , which is a mea- 

sure of the  the  influence of truncation e r r o r  on the solutions  (for  a  detailed 

description of this quantity, see (53)). So long as this  parameter  remains less 

than 0.01 we may  be  reasonably  confident  that  the  truncation  error  has little 

effect on the  final  values of the  solutions.  This  condition is slightly  violated, 

but  not to the  extent  one would expect  an  error  greater  than 0.01 percent. 

Figure E-3b shows  the parameters  for  nozzle flow. Here  the  sign of the 

scaling  constant u (see eq. ES) is changed,  and  the  sign of the  eigenvalues is 

changed  accordingly.  The  parasitic  eigenvalues are now positive, and  the role 

of the  parameters ] A m i n  h]  and ]Amax hl is interchanged.  The  implicit  method 

was  used  exclusively for obtaining  the  nozzle-flow  solutions; as a result,  the 

stability  criterion, \Am= hl , is always  greater  than  2.  The  "error" crite- 

rion, lhrnin hl , reaches a maximum  value of 0.12 about  1-centimeter down- 

s t ream of the  throat,  indicating  that  the  maximum  error  due  to  numerical 

truncation effects is slightly  greater  than 0.01 percent.  Everywhere else in 

the flow  the e r r o r  is much less. It should  be  mentioned  again  that  the  values 

of the  stability  and er ror   parameters  depend on the  value of E in  the  procedure 

described  for  determining  the  step  size. 
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Adjusted shock passage time, sec 

-2 

(a) Eigenvalues, x 
Figure  E-1.  Parameters  characterizing  the  numerical  aspects of shock wave 

solutions,  versus  adjusted  shock  passage  time  (associated  model 
parameters  are  l isted along first row of table IV-1) 
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Adjusted shock passage time, sec 

(b) Jhmin h \  
Figure E-1 Continued 
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Adjusted shock passage time, sec 

(e )  l ~ m a x  hl 

Figure E-1 Continued 
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(a) Eigenvalues, A 
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time, sec 

Figure  E-2.  Parameters  characterizing  the  numerical  aspects of shock wave 
solutions,  versus  adjusted  shock  passage  time  (associated  model 
parameters  are  listed  along  the  sixth  row of table IV-1) 
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(b) ]Amin h 1 
Figure E -2 Continued 
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Figure E-2 Continued 
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(a) Eigenvalues, A 

Figure E-3. Parameters  characterizing  the  numerical  aspects of nozzle 
solutions  versus  distance  along  nozzle  (associated  model 
parameters  are  those of figure IV-5) 
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Figure E-3 Continued 
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X, distance  measured from throat, cm 

(c) I Amin h 1 
Figure E-3 Continued 
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APPENDIX F 

EXPLICIT FORMULATION OF THE  FLOW  EQUATIONS 

The  procedure  for obtaining the  differential  equations of one-dimensional 

flow was  described  in Appendix E ,  and the  required  equations  were given im- 

plicitly.  Here  the  explicit  formulation of these  equations is set down. The 

singular  behavior of the  coefficient matrix [B*] (see Appendix E) is also 

discussed. 

The  set of equations  required  to  describe  one-dimensional flow with 

vibration-dissociation coupling are given  by  equation (E8), where  the  coefficient 

matrix [ B*] is defined by 

[B*] = 

PA 

PU 

U 

0 

0 

0 

0 

0 

uA 

- ap 
aP 

0 

0 

0 

0 

0 

0 

0 

- ap 
aT 

ah n 
0 

0 

0 

0 

0 

0 

0 

- ah 
€A 

0 

0 

1 

0 

0 

0 

0 

- ah 
aeB 

0 

0 

0 

1 

0 

In general,  chemically  reacting  systems with vibrational  equilibrium  also ex- 

hibit similar coefficient matrices in that  most of the  diagonal  elements are 

unity (see, e.g.,  53,  53a). 

The  matrix of minors and the  determinant of such  matrix  systems are 

readily  evaluated.  (This is the  same as saying  that  such  systems of equations 
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are easily  solved.)  That  this is true  can be demonstrated as follows: We may 

partition  the matrix [B*] into square submatrices  according  to 

The  determinant of such a system  can  be  written 

det [B*] = det [ A] x det [I] - det [B]  x det [ O ]  (F3) 

However,  the  determinant of the  submatrix [o 3,  the null matrix, is zero  and  the 

determinant of the  matrix [I], the  identity  or  unit  matrix, is unity.  Hence,  the 

problem of obtaining  the  determinant of the  high-order  coefficient  matrix is re- 

duced  to a simpler  problem of obtaining  the  determinant of the  lower  order  sub- 

matrix [A]. The  result is given  by 

The  singular  behavior of [B*] is particularly  important,  since it is the 

source of integration  difficulties. It will only be  demonstrated  here  that  such 

behavior  exists when the flow velocity  v is equal  to  the  "frozen"  value of the 

speed of sound. We first introduce  the  following  relations:  the  specific  heat 

at constant  pressure 

c =  a!L P aTP 

the  isentropic  exponent 

y =  - cP 
CV 
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the  frozen  speed of sound 

af =di%iE 

and  the  identity 

We can  evaluate  the  determinant of the  coefficient  matrix (F4), i n   t e rms  of 

these  quantities.  The  result is 

= pA [cP (RZT  -u2) + RZu2] (F6b) 

= pA (cp - RZ ) 'PRZ Cp - RZ 
- u2 

= PA cV [af - u2] 2 

We observe  that  the  determinant [B*] is zero when the flow velocity is equal  to 

the  frozen  speed of sound af (see, e.g., 97) .  This  singular  point  may  be  identi- 

fied as a saddle-point  singularity  and is the  source of considerable  computation 

difficulty  near  the  throat of a nozzle (see, e.g.,  (53a)). 

The  adjoint  matrix is required  before  an  explicit  form of the flow equations 

can  be  given  (e.g.,  note  eq. (Elo)) .  An expression  for  this  matrix is readily 
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obtained once the  matrix of minors is given. With the  'Ipartitioning  scheme" 

described earlier, the  matrix of minors is readily  evaluated. We obtain 

PA aT 
ah  -u2 A 0 

where 

0 0 

0 0 

0 0 

0 0 

IB*I 0 

0 IB*I 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

IB*I 0 

0 IB*I 

p = p [2$ - .2] = p - pu2 
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i 
The  adjoint  matrix [B*]-' det [B*] is obtained from  the  matrix of minors 

in-the-following  straightforward  manner: First, multiply  each  element of the 

I matrix of minors by the  factor (-l)i+j, which  changes  the sign of alternate 

i elements.  (The  resulting  matrix is called  the  cofactor of [E*] .) Second, inter- 

change rows and columns;  that is, obtain  the  transpose of the  cofactor.  The 

resulting  matrix is the  adjoint  matrix of [B*] and is given by 

0 0 0 0 IB'I 0 0 0 

0 0 0 0 0 IB* l  0 0 

0 0 0 0 0 0 IB'I 0 

0 0 0 0 0 0 0 IB* I 

The  derivative  vector F , equation (ElO), is obtained from  the  vector- 

matrix  product  adj [B*] c.  The  elements of the  resulting  vector a re  the 

derivatives  that a r e  required.  Explicitly  they a re  as follows: 

-+* 
& 

(FlOa) 

(FlOb) 

(Floc) 

(FlOd) 
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F: = I B * I Q  YB (Floe) 

F$ = IB*l QYa (FlOh) 

where ..4 = 1, 2, . . . , 5 denotes  the  nonequilibrium  variables YA, YB , 

E B ,  and Ya, respectively.  This  formulation is useful in that  its  symmetry  sug- 

gests  the  generalization  required  for  more  complex  systems,  for  example, 

chemical  systems with additional  reacting  species. In such cases  there will  be 

additional rate equations (Q quantities); one additional  equation is required for 

each  additional  dependent  species-concentration  variable. 

€A 

The  complete  system of equations, denoted by the  vector  (see  eq. 

(El lc)  in the  text), is obtained by adding one more  element to the  set T* 
to  obtain 

?* = (F *T,  det  [B*]) 

An alternative  representation of the first three  rate  equations, equations 

(F10 a ,  b ,  and c) is useful. We first  introduce  the  identities 

(F12a) 

(F12b) 
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, 

(F13a) 

pa Q a  = P[(RZT-uZ) Hz - uzHi] (F13b) 
a 

Substitution of these  quantities  into  the  relevant  equations (F10) yields 

- - (RZT-u2) - dJn4  
dx 

These  equations  rather  than  equations (F10 a ,  b ,  and c )  were  used  to obtain the 

results  reported  in  Chapter IV. 

One additional  change was made. In practice  it was  found that  equations 

(F14),  the  associated  rate  equations, and the  choice of dependent variables  indi- 

cated by equation (Ellb) of Appendix E a re  not always  easily  solved on an 

electronic  computer  that is limited  to  arithmetic  operations involving numbers 

between certain fixed  bounds. These bounds a re  of order and loy8 for an 

IBM 7094 electronic  computer when the  single-precision  arithmetic option is 

employed.  The reason  for  the  difficulties  that  occur  can be illustrated as 

follows: In the flow field  immediately behind a shock  wave  the  dependent vari- 

able 'YB is proportional  to exp(-Eb/kTB) (TB = 300" K immediately behind 

the shock j , and for  values of Eb/k greater  than 26,000' K, YB is less than 

and its value is rounded to  zero by the  computer.  Since  this  variable 

occurs as a product in the  rate equation &EB , equation  (Flog)  (see  also eq. 
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(II-llOd) in  the  text),  considerable  difficulty is then  encountered  until  the tern- 

I .  .. perature  TB is sufficiently  large  that exp(-Eb/kTB) > Similar 

problems are experienced with the dependent variable Ya. In addition,  these 

variables  also change  rapidly in the  transient  region behind the  shock,  increas- 

ing  in  an  exponential  manner more than 33 orders of magnitude (see, e.g.,  fig. 

IV-1). The integration  methods  actually involve  low-degree  polominal  "fitting." 

Consequently,  many  points  and a corresponding  large  amount of computer  time 

were  required  to  advance  through  the  transient  region.  Another  problem was 

that of determining  the  temperature  T  in  the  transient  region. If YB is 

identically zero then so is EB and TB is then  indeterminant. All these 

problems  were  alleviated by introducing  the dependent variables 7 7 , T 

T 7 in place of yA, yB, EA,  EB , ya where 

B 

A' B A' 

B' a 

YA = anyA 
- 

(F15a) 

- 
Ya = any, (F15c) 

The appropriate  rate  equations  for  these  more  convenient  variables  can be 

obtained by inspection. They are as follows: 

(F16a) 

F, = p2A[u2 (E - RZ) danA + RZH, - E ah HI] (F16b) 
dx 

d .EnA - (RZT - u,) H, - U ~ H ~  1 (F16c) 

(F16d) 

(F 16e) 
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The  quantities H I  and Hz a re  evaluated  according  to  equations  (F12),  where 

(F 17a) 

- - - 
The rate quantities QYA, QYB, QTA, QTB, and Qya a re  obtained from 

equations (II-113) (note eq. (II-114)). The rate  equations  represented by F 

were  integrated to yield  the  results  discussed  in  Chapter IV. 
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APPENDIX G 
. .  
. .  PHYSICAL  CONSTANTS AND OTHER  REQUIRED PARAMETERS 

The  fundamental  physical  constants  required  for  the  analysis are listed 

here  for  the  reader's convenience.  Also  given are the  assigned  values of other 

constants  used  throughout  the  work.  The  reader is referred  to  the  text for an 

explanation of the  listed  values. We have  used  c.g.s  units  throughout. 

(1) Physical  Constants 

Avagadro's  number No = 6 . 0 2 4 8 6 ~ 1 0 ~ ~  (g-mole)-' 

Planck's  constant h = 6 . 6 2 5 1 7 ~ 1 0 - ~ ?  erg-sec 

-ti = 1 . 0 5 4 4 3 ~ 1 0 - ~ ~  erg-sec 

Boltzmann  constant  k = 1 . 3 8 0 4 4 ~ 1 0 - ~ ~  erg  OK-' 

Universal gas constant R, = 8 . 3 1 6 6 2 ~ 1 0 ~  erg  (g-mole)-l OK-' 

(2) Other  required  parameters 

(a) Molecular oxygen 

Anharmonicity  separation  a = 9 (see Appendix A and B) 

Temperature  separation  b = 16 (see Chapters I11 and IV) 

Number of energy  levels N = 32 (see Appendix A) 

Lower states energy 
level  separation eAi = 2234.3"K (see Appendix A) 

Upper states  energy 
level  separation e4 = eB = 1800.2"K (see Appendix A) 

ea = 19,675"K (see Appendix A) 

= 32,276"K (see Appendix A) 

Model dissociation 
temperature ON-1 = 59,280"K (see Appendix A) 
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I 
t 

Characteristic 
dissociation  temperature 6,, = 59,368"K 

Characteristic  rotational 
temperature 
where u (symmetry 
factor) is 2 

'R,oz = 2.07u"K 

(Eo)M = 2256°K 

( X o ) ~  = .00962 

Oxygen molecular  mass mq = 32 g/mole 

Heat of formation h& = 0 

Electronic  excitation  parameters 

a gEQ,a,02 'Ea,.e,02 (OK) 

1 3 0 

(Po (02-02 = 5.2587 

400 1 0 2 - 0  = 4.5939 

400 Jo2-Ar = 5.4454 

(b) Atomic oxygen 

Mass mo = 16 g/mole 

Heat of formation hg/Ro = 29690°K 

Electronic  excitation  parameters 

a 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

g E ~ , ~ , o  
5 
3 
1 
5 
1 
5 
3 

19 
8 

84 

%Q,a,02 (" K) 
0 

228.0 
325.8 

22825 
48609 

106112 
110166 
126051 
137878 
142875 

(see Appendix A) 

(see eq. (A2d)) 

(see eq. (AlOa)) 

(see eq. (AlOa)) 
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(c) Argon 
$- 

I .. 

Mass 

Heat of formation h i r  = 0 

mAr = 39.944 g/mole 

Electronic  excitation  parameters 

1 1 0 
2 5 93144 
3 3 93751 

(3) The following table  was  often  used  for  converting  various  energy  units i n  

references  and is reproduced  here  because of its  usefulness. 

Table G-1 

Energy Unit  Conversion Factors 

N Avagadro's  number 
c Speed of light 
k Boltzmann  constant 
h Planck's  constant 
Ro Universal  gas  constant 
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